
A Virtualized Testbed with Physical Outlets
for Hands-on Computer Networking Education

Mark Schmidt Florian Heimgaertner Michael Menth
{mark-thomas.schmidt,florian.heimgaertner,menth}@uni-tuebingen.de

University of Tuebingen, Dept. of Computer Science, Tuebingen, Germany

ABSTRACT
Many computer science curricula include practical courses to
undergraduate and graduate students to offer them hands-
on networking experience by connecting PCs, switches, and
routers in a testbed. Such testbeds are expensive, bulky,
energy-intensive, and cause heat problems. Virtualization
of PCs and routers on commodity hardware is a solution to
those problems. A challenge is to provide physical interfaces
for the virtualized components so that students still have the
hands-on experience including cabling. In this work, we pro-
pose a solution based on inexpensive hardware that can be
mounted in a standard 19-inch cabinet. As WiFi adapters,
headsets, or additional serial interfaces are needed for ad-
vanced experiments, we provide means to connect them as
USB devices to virtualized PCs and routers. The system is
configured so that students have only access to the virtual
machines and their physical interfaces.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education; C.2.3 [Computer-Communication
Networks]: Network Operations

Keywords
Laboratories; Networking; Virtual Machines; Computer net-
working education

1. INTRODUCTION
While practical networking courses are not mandatory for

most computer science and electrical engineering degrees,
they are very popular among students. A major reason for
that is the insight that applied networking knowledge may
be helpful for their future career but also the fact that inter-
connecting devices with cables and switches is fun for most

The authors acknowledge the funding by the Deutsche
Forschungsgemeinschaft (DFG) under grant ME2727/1-1. The
authors alone are responsible for the content of the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGITE/RIIT’14, October 16–18, 2014, Atlanta, GA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2686-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2656450.2656451.

students. Such hands-on networking courses were offered at
the University of Tuebingen since 2004 based on the con-
cept of Liebeherr and Zarki [15]. The testbeds consisted of
6 PC and 2 routers that can be connected via two unman-
aged desktop switches, as well as via a wireless access point
and WiFi adapters attached to the PCs. The PCs were con-
nected to a central server through an additional switch. This
setup is depicted in Figure 1.

Figure 1: Initial situation. Testbed with physical
nodes.

In 2012, a fundamental renewal was necessary, because
the testbed hardware was both outdated and degraded. The
following conditions had to be taken into account. The net-
working lab was so successful that the three testbeds, op-
erated in time-sharing mode, were no longer sufficient for
the large number of interested students, but our lab had not
enough space for more physical testbeds. As no sponsors for
hardware could be found and the testbed hardware is ex-
pected to be renewed in the future again, the hardware and
software expenses should be low. Resources for scientific
computing were needed at the same time.

At that time, new advances in hardware support for vir-
tualization of the x86 architecture stipulated academic ex-
periments in our group. As a result, we designed and im-
plemented a testbed setup where the 6 PCs and 2 routers
were implemented as virtual machines (VMs) on a commod-
ity server. The Ethernet interfaces of the virtual nodes are
connected through the Ethernet ports of the testbed host via
a managed switch to a patch panel using Virtual Local Area
Network (VLAN) technology. This way, the interfaces of the
virtual nodes are physically accessible. Likewise, USB de-
vices can be plugged into a USB hub and mapped to specific

virtual machines. In such a testbed, the hands-on experience
for students is retained as they can interconnect the phys-
ical interfaces of the virtual nodes with real switches and
cables or attach USB devices. This is not the case in fully
virtualized or emulated environments.

The testbed was shown as a demonstration [23] at SIG-
COMM’14. This paper presents the setup in detail.

The paper is structured as follows. Section 2 reviews var-
ious approaches for networking lab testbeds. Section 3 de-
scribes the testbed architecture and explains solutions to
special challenges. Section 4 summarizes this work and
draws conclusions.

2. RELATED WORK
As practical networking courses are quite common in com-

puter science and IT education, various designs for labs and
testbeds have been published. In this section we provide an
overview of different implementation approaches.

In [15] Liebeherr and Zarki describe a hands-on Internet
course. The book contains both the syllabus and instruc-
tions for setting up a testbed. The testbed consists of 4
physical Linux PCs and 4 Cisco routers. In [3] a testbed
design based on 3 PCs, one laptop computer, and two multi-
protocol routers is described. In addition, central network-
ing equipment is proposed for management purposes and
inter-testbed connectivity.

Emulab [26] is a platform for networking testbeds that
allows to connect physical nodes or VMs over virtual net-
works. Topologies and link characteristics are modelled us-
ing VLANs and transparent traffic shaping nodes. In ad-
dition, simulated nodes can be integrated into experiments.
The authors of [24] describe a similar implementation. To
enable remote learning, the physical nodes are connected by
configuring VLANs instead of plugging cables.

Other hands-on labs are entirely built on VMs. In [2] a
setup is described where 120 PCs and routers run as Xen
VMs on a single host and are connected by virtual switches.
dVirt [17] is a virtualized BGP router testbed consisting of
Xen VMs connected by Open vSwitch. V-Lab [27] is a re-
mote access lab with VMs on a XenServer cluster connected
using VLANs.

In [1] a reconfigurable network lab based on VMware is de-
scribed. Each physical interface can be assigned to at most
one VM to provide physical access to Ethernet interfaces
of VMs. This approach requires at least as many physi-
cal Ethernet interfaces as virtual Ethernet interfaces. As
the number of pluggable network interface cards (NICs) per
host is limited, this is a severe limitation on the number of
virtual interfaces supported by the host. Therefore, we use a
different approach which can support more virtual interfaces
than the number of Ethernet ports on a host.

3. TESTBED ARCHITECTURE
This section starts with an overview of the testbed and

a hardware description. We explain the virtualization plat-
form and the software infrastructure of the networking lab.
Finally, we describe our realization of physical access to in-
terfaces of VMs, and present solutions to problems encoun-
tered during the actual implementation of our concept.

3.1 Overview
The new testbed provides the same features as the old

testbed given in Figure 1. It consists of a “testbed host” and

Figure 2: Networking cabinet and testbed host run-
ning the virtual nodes.

a cabinet with networking hardware, which are illustrated
in Figure 2. The “testbed host” hosts 6 virtualized Linux
PCs and 2 routers. The networking hardware is placed in a
6U wall mount cabinet (covers and front door are removed
in the figure). At the bottom a managed switch is mounted
facing backwards. Above the switch, two front panels carry
DB9 and RJ45 outlets for the virtual routers. Unmanaged
desktop switches for student exercises and other networking
devices are placed on a rack-mount shelf. The topmost rack
unit is covered by a labeled patch panel, serving as network
outlets for the virtualized PCs. A USB hub is attached to
the left mounting post. The WiFi adapters for the PCs are
provided as USB devices that can be passed through to the
VMs. In the same way physical headsets for voice-over-IP
(VoIP) exercises can also be connected. On top of the cab-
inet, a wireless access point running the OpenWrt embed-
ded Linux distribution is available for experiments involving
IEEE 802.11 technology.

An additional “lab server” provides common services (see
Section 3.4.2) to all the testbeds.

3.2 Hardware Description
We use commodity server hardware based on the Intel

Xeon platform (Xeon E3 Sandy Brigde) for the testbed host.
The machine is equipped with 32 GB RAM, RAID-5 disk
storage, and an Intel I350-T4 Ethernet adapter. Multiple
USB WiFi adapters, two USB/Serial converters, and two
USB headsets can be connected through a powered 8 port
USB hub.

To provide access to the Ethernet interfaces of the VMs,
we use a managed HP Procurve 48 port Ethernet switch
in combination with a 24 port patch panel. The students
use two unmanaged desktop switches and large quantity of
Cat5e twisted pair patch cables to create and modify net-
work topologies in the course of their exercises.

The lab server relies on the same hardware platform as the
testbed hosts, but it is equipped with additional Ethernet
interfaces so that every testbed can be connected.

3.3 Virtualization Platform
We describe the hardware and software support for the

virtualization concept of the testbed host.

3.3.1 Hardware Support for Virtualization
The hardware of the testbed host has to provide support

for multiple hardware virtualization features.
Firstly, the CPU has to provide extensions that enable

the x86 architecture to be virtualized with hardware sup-
port, which is not possible by default. This is necessary as
pure software virtualization is very CPU intensive and lacks
performance. Those extensions are marketed as VT-x [25]
by Intel. Different implementations are available from other
CPU manufacturers.

Secondly, an Input/Output Memory Management Unit
(IOMMU) is required as we want to pass through physically
available hardware, e.g., Ethernet devices, to the VMs. An
IOMMU provides features such as translation from virtual
device addresses to physical device address, which is needed
for remapping of interrupts and DMA. In the case of Intel
hardware this feature is summarized as VT-d [7].

As a testbed host does not provide enough PCI slots to
plug in four dedicated Ethernet devices per VM, we have to
be able to realize more than one virtual Ethernet interface
per physically available NIC. Two additional technologies
are used to realize and subsequently map these virtual inter-
faces to VMs. Virtual Machine Device Queues (VMDQ) [8]
enable multiple queues per NIC. They are connected by an
internal bridge, and implement the packet forwarding to the
VMs in hardware. PCI-SIG Single Root I/O Virtualiza-
tion (SR-IOV) [18] provides an extension of the PCI Ex-
press standard that allows multiple so-called virtual func-
tions (VF) on a single physical function (PF). A PF is a
full-featured PCI device whereas VFs are lightweight PCI
devices that are managed by a PF. Each VF can be indi-
vidually passed through to a VM. Together with VMDQ, it
is possible to provide multiple virtual Ethernet interfaces,
each with its own queue, on a single physical device, which
is called VT-c [6] for Intel hardware.

3.3.2 Software Support for Virtualization
Software support is required to make the virtualization

mechanisms available. The hypervisor used to run the VMs
needs support for the extensions described above. Espe-
cially, it should be possible to pass through both Ethernet
and USB devices to the VMs. Additionally, we need to limit
the resources used by each VM so that misconfiguration of
a VM by students does not affect the host system.

We use the Kernel-based Virtual Machine (KVM) [10] of
Linux as hypervisor on the testbed host for the VMs. The
basic idea of KVM is to implement the hypervisor as part
of the Linux kernel on the host machine instead of using a
dedicated software like Xen. That means, the host kernel
has direct access to the hardware and is responsible for reg-
ulating VM access to the hardware. However, KVM cannot
be used directly as it is realized as a kernel module and does
not provide an interface for user interaction. QEMU [19]
is the user space software to run the VMs. It is a multi-
purpose virtualization tool which can emulate various types
of hardware such as CPU, hard disk, or network adapters.
Additionally, it can use KVM as a backend to benefit from
hardware virtualization features of modern x86 CPUs and
chipsets. In the presence of hardware support, entire hard-
ware devices like PCI or USB devices can be passed through
to a VM.

For improved maintainability a virtualization framework
should be used to create, manage and run the VMs, instead

of starting QEMU directly. We use the libvirt [21] frame-
work which provides among other tools the command line
frontend virsh and the graphical tool virt-manager. Hard-
ware and resources assigned to a VM are configured using
XML files which are convenient to understand and modify
for both humans and computers. Furthermore, libvirt al-
lows to add and remove hardware like USB devices at VM
runtime. Thereby we can connect WiFi adapters, headsets,
or USB/Serial adapters to the VMs.

The VMs can either be accessed by a serial text termi-
nal or graphically using “virt-viewer” which can use VNC or
spice [22] to provide the screen of the VM. We prefer spice
because of better performance and additional features such
as clipboard sharing between testbed host and VM as well
as automatic adjustment of screen resolution for the VMs
depending on the window size of the viewer.

As we want a Cisco-IOS-like experience for the virtual
routers, we do not provide graphical access to them, but
only a command line interface. This interface is realized by
the vtysh shell of the Quagga [20] routing software suite.

3.4 Networking Lab Software Infrastructure
We describe the software support for the testbed host and

the VMs and the services provided by the lab server.

3.4.1 Software Support for Testbed Host and VMs
All machines, physical and virtual, are powered by the

Ubuntu [4] Linux operating system. The testbed hosts are
based on a minimal installation and contain only the soft-
ware required to run and access the VMs, that means in par-
ticular QEMU and libvirt with their dependencies, but also a
simple user interface (see Figure 3). The interface provides a
menu to start, stop, attach USB devices and access the VMs
and a web browser. The VMs run on a default Lubuntu in-
stallation, the LXDE (a lightweight desktop environment)
flavor of Ubuntu, and are equipped with additional software
such as wireshark to monitor traffic or services, which is
needed for practical exercises. The virtual routers are also
based on a minimal installation and additionally provide the
Quagga router suite.

Figure 3: User interface of the testbed host.

To simplify the management of the network interfaces,
we decided to rename the network interfaces by the use of
udev [11] in a more structured way instead of the new default
biosdevname [16] based naming scheme. Figure 5(b) shows
that the interfaces within the VMs are named according to
the traditional scheme, e.g. eth{0,1,2}, which provides a
better mapping to the physical network outlets. Before a

VF ethi of VM j is passed through to that VM, it is named
vmj-ethi on the host. The VFs ethi of all VMs are hosted
by the same PF which is named vm-eth0.

3.4.2 Services Provided by the Lab Server
The lab server provides several services for the testbed

hosts as well as for the VMs, which is shown in Figure 4. In
addition to infrastructure services, such as DHCP or DNS
and gateway, we also use services for a central account and
configuration management.

Figure 4: Lab setup with 3 testbeds.

To allow flexible and efficient management of both VMs
and testbed hosts, large parts of the system configuration are
managed centrally on the lab server. For this purpose we use
the puppet [9] configuration management software. Using a
declarative domain specific language, the desired configura-
tion of a node can be specified in so-called manifests. This
way we manage software packages, services as well as config-
uration files of testbed hosts and VMs. The puppet“master”
is running on the lab server, providing the configuration in-
formation. On the testbed hosts and VMs, puppet “agents”
are fetching and applying the configurations.

The user accounts for the students are managed using an
Lightweight Directory Access Protocol (LDAP) service and
their home directories are provided using the Network File
System (NFS). That way, the students can log in at any
available testbed and have access to their stored data. This
is especially useful in the case of testbed maintenance or in
the case of hardware problems. In addition to the home
directories, we use NFS to provide initial configuration files
and scripts for the students to use in the exercises.

Some commands in the exercises, such as starting or stop-
ping a service, require special permissions – they have to be
run as the root user. This can be achieved using the sudo

tool. However, for security reasons, students should not be
allowed to execute arbitrary commands as root, but only a
restricted set of commands. To realize this, sudo allows to
define these permissions for each command for both users
and groups. Therefore, students are members of a special
student group which has limited root permissions defined in
the sudo configuration. As we do not want to manage this
configuration by hand on each VM, we also use LDAP to
provide these rules for all VMs which requires sudo-ldap, a
special version of sudo, on the VMs.

3.5 Providing Physical Access to Virtual Eth-
ernet Interfaces

One of our main goals is to enable students to physically
connect VMs with real cables and switches. To that end,
physical access to Ethernet interfaces of the VMs is required.

(a) Physical setup; cables for the virtual routers are
omitted.

(b) Logical overview.

Figure 5: Providing physical access to Ethernet in-
terfaces of VMs.

Each of the 6 virtual PCs has 4 Ethernet interfaces and
each of the 2 virtual routers has 2 Ethernet interfaces. Fig-
ure 5(a) illustrates that the Ethernet interfaces of the VMs
are multiplexed over an Intel I350 quad-port NIC and de-
multiplexed by a managed switch. From there, they are
connected to a patch panel where physical access to each of
them is provided.

Each of the 4 ports on the NIC is implemented as a sepa-
rate PF providing 7 VFs that represent the Ethernet inter-
faces of the VMs. As explained in Section 3.3.1, they are
logically separate PCI devices that are individually passed
through to VMs.

A major challenge is the multiplexing and demultiplex-
ing. Figure 5(b) shows that the VFs eth{0,1,2} and up-

link from each VM are multiplexed over one PF (vm-...)
of the testbed host. We use VLAN technology for that mul-
tiplexing so that the managed switch can easily demulti-
plex the individual Ethernet interfaces. VLAN is defined
by IEEE 802.1Q [13] and allows multiplexing and demulti-
plexing of several virtual LANs (VLANs) over a common

physical link which is then called “trunk” link. To enable
multiplexing and demultiplexing, a “tag” is inserted into the
header of Ethernet frames indicating the VLAN. In our so-
lution, we use a dedicated VLAN with a unique ID per VF,
representing a VM interface. The PFs act as an Ether-
net bridge, forwarding data for the VFs as tagged VLANs.
The driver on the testbed host configures the PF to trans-
parently add/remove the tags in the Ethernet frames dur-
ing the transition from/to the VM. The managed VLAN-
capable switch also adds/removes the tags while multiplex-
ing/demultiplexing the VLANs from/to the patch panel. As
a result, VLAN tags cannot be observed in Ethernet frames
neither in VMs nor on the patch panel.

3.6 Attaching USB Devices to VMs

Figure 6: Connecting USB devices to VMs.

As shown in Figure 6, selected USB devices can be plugged
into a USB hub that is connected to the testbed host and
then be passed through to a VM. In the following, we explain
how we configure this passthrough.

USB devices have a unique ID and get an address assigned
as soon as they are connected to the bus. We implement a
fixed assignment of USB devices to VMs inside a testbed.
For selected USB devices the assignment of the IDs to VMs
needs to be defined in appropriate udev rules. Flexible as-
signment of special USB devices to VMs is basically possible
but not implemented as not needed.

When a USB device is plugged in, the testbed host gets
a udev event containing the address and ID of that USB
device. The testbed host matches the ID against a udev
rule set that triggers an action. We defined as an action for
the IDs of the special USB devices the execution of a shell
script that generates a configuration file for libvirt. The
user can then trigger the passthrough of the USB device to
the VM over the GUI illustrated in Figure 3. The trigger
calls libvirt which loads the configuration file and possibly
interacts with QEMU to pass the address of the respective
USB device through to the appropriate VM. This design
allows the special USB devices to be plugged in before the
VMs are started.

3.7 Problems and Solutions
During development and testing of the testbed we encoun-

tered several problems. We describe some of them and our
solutions.

3.7.1 Bridged Virtual Functions
The Intel I350 network adapter provides a feature called

PF Loopback. This technique is intended to improve network
performance by bypassing an external switch in cases where
both source and destination are VFs of the same PF. While
PF Loopback is a desirable feature for common datacenter
applications, it leads to unwanted side effects in the testbed.
Under certain configurations, network connectivity between
VMs remains available even though the corresponding cables
are unplugged.

Version 4.3.0 and below of the Intel NIC driver [5] did not
provide an option to disable this behavior without modi-
fying the source code. Since version 5.0.5 the behavior is
configurable and can be changed using the bridge tool1

of the iproute [12] package. It can be used to change the
bridge mode of the PF to Virtual Ethernet Port Aggregator
(VEPA) [14] mode, which enforces the desired behavior.

3.7.2 Shared Network Bandwitdh
The bandwidth of a PF is shared by its VFs. This may

lead to problems with point-to-point performance measure-
ment. A workaround is to use at most one VF per PF for
such experiments. Another solution is to connect the PF
to Gbit ports of the switch but to connect the VLANs on
patch panels to 100 Mbit ports of the switch. This reduces
the p2p bandwidth to at most 100 Mbit/s.

3.7.3 Identification of USB Devices
Some vendors do not respect the purpose of unique serial

number fields and use the same ID for all devices in an en-
tire product batch. Therefore, it is not always possible to
distinguish plugged USB devices only by their IDs.

To still differentiate them, the specific driver, e.g., an Eth-
ernet driver, for the device has to be loaded on the host.
Thereby, USB WiFi adapters can be distinguished by their
MAC addresses. However, to use the USB passthrough
mechanism and assign the USB device to a specific VM,
the driver has to be unloaded on the host again. This can
be achieved by special udev rules and scripts.

3.7.4 Virtual Machine Images
Local file system changes made by students should be per-

sistent during exercises and in particular be kept on power
cycles. After the completion of an exercise or in case of a
major misconfiguration, it should be possible to reset the
file system to a default configuration. We describe how we
achieve these two goals.

The VM image is stored on the hard disk on a separate
volume. It contains the initial file system. Changes to the
file system are stored as increments in a special file on an-
other volume. By resetting that file, the original file system
is restored.

We implement this method by using LVM2 to create log-
ical volumes (LVs) of the hard disk which are virtual disk
partitions. Each VM image is stored in a separate LV; they
differentiate only by minor configuration differences. The
incremental storage of file system changes is performed by
QEMU and commonly known as overlay. The base volume
is the so-called backing file and the file with the incremental
changes is called image and uses the qcow2 format.

1tested with version 3.12. The bridge tool was introduced
in version 3.5.0, 2012

3.7.5 Serial Network Interface
The serial link between the virtual routers is realized by

a PPP connection over a null modem RS-232 serial cable.
By default PPP provides flow control for the communica-
tion which leads to the effect that packets are queued if the
physical link is broken and all packets are sent if the link
becomes available again. This effect can be observed with
the ping command. Packets are not dropped as expected
when unplugging the cable. When the cable is plugged in
again, large round-trip times can be observed as they include
the downtime caused by unplugging the cable. To enforce
the desired behavior, it is necessary to explicitly disable flow
control in PPP.

4. CONCLUSION
We presented a testbed setup with all PCs and routers

virtualized on a single commodity server. The testbed dis-
tinguishes from others by the fact that Ethernet and USB
interfaces to the virtual machines are accessible on a patch
panel and a USB hub, respectively. The implementation
combines the advantages of a purely virtualized testbed and
an entirely physical testbed. On the one hand, our approach
is cost-effective, saves energy and space and causes only lit-
tle heat, and the testbed host can be reused for scientific
computing if not needed for exercises. On the other hand,
it retains hands-on experience for students in the sense that
they can connect nodes using real switches and cables. The
suggested architecture is easily extensible as new devices can
be attached to virtual nodes via the USB hub, which allows
the integration of new experiments in networking courses.

We successfully operate 6 of these testbeds since Jan-
uary 2013 and gained experience from 3 rounds of successful
networking courses since then. The interoperation of the
early virtualization-capable versions of the operating sys-
tem, drivers, as well as other software and hardware was
initially rather challenging. However, the software has suffi-
ciently evolved in the meantime so that the operation of the
testbed is stable. This experience shows that virtualization
of low-cost devices has matured to a degree that they can
be plugged together even for non-standard deployment.

5. ACKNOWLEDGEMENTS
The authors thank Wolfgang Braun, Michael Hoefling,

Andreas Stockmayer and Sebastian Veith for helping assem-
bling the testbeds, Jakob Herrmann, Cynthia Mills and An-
dreas Stockmayer for support in executing the networking
courses, and the Institut fuer Astronomie und Astrophysik
Tuebingen (IAAT) Workshop for manufacturing the front
panels of the virtual routers.

6. REFERENCES
[1] S. Abbott-McCune, A. J. Newtson, and B. S. Goda.

Developing a Reconfigurable Network Lab. In ACM
SIGITE, 2008.

[2] C. Avin, M. Borokhovich, and A. Goldfeld. Mastering
(Virtual) Networks - A Case Study of Virtualizing
Internet Lab. In International Conference on
Computer Supported Education (CSEDU), 2009.

[3] C. E. Caicedo and W. Cerroni. Design of a Computer
Networking Laboratory for Efficient Manageability
and Effective Teaching. In IEEE Conference on
Frontiers in Education, 2009.

[4] Canonical Ltd. Ubuntu 14.04 LTS (Trusty Tahr).
http://releases.ubuntu.com/14.04/, 2014.

[5] Intel Corp. igb Linux Base Driver for Intel Ethernet
Network Connection.
http://sourceforge.net/projects/e1000/files/igb stable.

[6] Intel Corp. Intel Virtualization Technology for
Connectivity (VT-c), 2012.

[7] Intel Corp. Intel Virtualization Technology for
Directed I/O (VT-d) Architecture Specification, 2012.

[8] Intel LAN Access Division. Intel VMDq Technology.
Whitepaper, Intel Corp, 2008.

[9] L. Kanies. Puppet: Next-Generation Configuration
Management. The USENIX Magazine, 31(1), 2006.

[10] A. Kivity et al. kvm: the Linux virtual machine
monitor. In Linux Symposium, 2007.

[11] G. Kroah-Hartman. udev – A Userspace
Implementation of devfs. In Linux Symposium, 2003.

[12] A. Kuznetsov and S. Hemminger. iproute2: Utilities
for Controlling TCP/IP Networking and Traffic, 2012.

[13] LAN/MAN Standards Committee of the IEEE
Computer Society. IEEE 802.1Q: Virtual Bridged
Local Area Networks, 2003.

[14] LAN/MAN Standards Committee of the IEEE
Computer Society. IEEE 802.1Qbg: Edge Virtual
Bridging, 2012.

[15] J. Liebeherr and M. E. Zarki. Mastering networks –
an internet lab manual. Pearson Education, 2003.

[16] Narendra K. Consistent Network Device Naming in
Linux. Whitepaper, Dell Linux Engineering, 2012.

[17] I. Oprescu, M. Meulle, and P. Owezarski. dVirt: A
Virtualized Infrastructure for Experimenting BGP
Routing. In IEEE Conference on Local Computer
Networks (LCN), 2011.

[18] PCI SIG. Single Root I/O Virtualization and Sharing
Specification 1.1, 2010.

[19] QEMU team. QEMU 2.
http://wiki.qemu.org/ChangeLog/2.0, 2014.

[20] Quagga team. Quagga Routing Suite.
http://www.nongnu.org/quagga/.

[21] Red Hat. libvirt: The Virtualization API.
http://libvirt.org, 2012.

[22] Red Hat. SPICE. http://www.spice-space.org/, 2012.

[23] M. Schmidt, F. Heimgaertner, and M. Menth. Demo:
A Virtualized Lab Testbed with Physical Network
Outlets for Hands-on Computer Networking
Education. In ACM SIGCOMM, 2014.

[24] S. C. Sivakumar, W. Robertson, M. M. Artimy, and
N. Aslam. A Web-Based Remote Interactive
Laboratory for Internetworking Education. IEEE
Transactions on Education, 48(4):586–598, 2005.

[25] R. Uhlig et al. Intel Virtualization Technology. IEEE
Computer, 38(5):48–56, 2005.

[26] B. White et al. An Integrated Experimental
Environment for Distributed Systems and Networks.
In Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[27] L. Xu, D. Huang, and W.-T. Tsai. V-Lab: A
Cloud-Based Virtual Laboratory Platform for
Hands-On Networking Courses. In Conference on
Innovation and Technology in Computer Science
Education (ITiCSE), 2012.

