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Abstract—This paper gives a simple introduction to Network
Calculus (NC), a theory to calculate end-to-end delay bounds
for packet-switched communication networks. It illustrates how
various networking parameters affect delay bounds when flows
are multiplexed. Various algorithms for the calculation of end-to-
end delay bounds are revisited and their performance is compared
under different conditions. The framework is applicable to feed-
forward networks and useful to determine delay bounds for flows
in Ethernet networks.

I. INTRODUCTION
Critical facilities such as power generation and distribu-

tion or industrial automation networks are currently being
automated using packet-switched communication technologies
such as industrial Ethernet. Applications in these domains are
often mission-critical and require the network to support real-
time communication in the sense that packet loss and excessive
delays must not occur. In particular, delay bounds need to
be met. To ensure these requirements and to allow for the
planning of industrial Ethernet networks based on more than
just the experience of the network engineers involved, tools
are required to predict the maximum delay a flow possibly ex-
periences under worst-case conditions. This can be supported
by the theory of Network Calculus (NC) which is based on the
pioneering work of [1], [2]. A good overview is given in [3]–
[5]. Tight approximation of delay bounds for FIFO networks
is possible, but very complex [6]–[9]. While deterministic NC
– as treated here – computes worst case bounds, stochastic NC
relaxes some assumption for large number of flows [10] and
gives statistical bounds. Some authors have proposed to apply
NC to Ethernet networks [11], [12].

NC requires that all flows in a network are known as
well as their paths and their traffic profiles. Furthermore, the
network, its capacities, and node delays are given. These are
inputs for the NC analysis. Unfortunately, NC is expressed
in rather difficult mathematical equations that require some
time to get familiar with. While NC for a single link is well
presented in most tutorial documents, the extension to an entire
network is generally harder to understand. In this paper, we
provide a simple and intuitive introduction to NC. We first
explain NC on a single link and discuss performance tradeoffs
resulting from multiplexing different flows. Then we revisit
two ways from [13] to apply NC to an entire network and
propose a third one. These algorithms are relatively simple and
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provide different delay bounds that we illustrate under various
networking conditions.

The paper is structured as follows. Section II explains
NC for a single link. Performance tradeoffs are illustrated
for small example scenarios in Section III. Section IV revisits
several extensions for the application of NC to entire networks
and again discusses performance tradeoffs. Finally, Section V
summarizes this work and gives an outlook on further research.

II. NETWORK CALCULUS FOR A SINGLE LINK

NC for a single link requires traffic descriptions for flows
which are expressed by arrival curves. They may characterize,
e.g., the rate and burstiness of the flows. The transmission
properties such as processing and transmission delay and
transmission rate of a link are described by a service curve.
The arrival curve of a flow and the service curves of a link
can be used to calculate performance metrics like backlog,
virtual delay, and output bound, which is a traffic description
of the flow after link traversal. When multiplexing multiple
flows, the transmission capacity of a link is shared so that
individual flows experience a reduced service curve depending
on the scheduling discipline. This leads to the concepts of a
minimum and maximum service curve which need to be taken
into account when calculating performance metrics.

A. Mathematical Definitions
NC uses functions to describe how much traffic passes a

certain network element over time. They belong to a set of
real-valued, non-negative, and wide-sense increasing functions
with f(0) = 0:

F = {f : R+
0 → R+

0 , ∀t ≥ s : f(t) ≥ f(s), f(0) = 0}. (1)

Addition (Equation (2)), subtraction (Equation (3)), con-
volution (Equation (4)), and deconvolution (Equation (5)) are
defined on this set of functions:

(f + g)(t) = f(t) + g(t) (2)

[f − g]+ (t) = max(f(t)− g(t), 0) (3)

(f ⊗ g)(t) = inf
0≤s≤t

(f(s) + g(t− s)) (4)

(f � g)(t) = sup
s≥0
{f(t+ s)− g(s)}. (5)

An example of the convolution is illustrated in Figure 2.
The neutral element e⊗ for this operation (e⊗ ⊗ f = f = f ⊗ e⊗)
is the function e⊗(t) =

{
0 t = 0

∞ t > 0
. An example of the decon-

volution is given in Figure 1. For t = 0 the deconvolution
(f � g)(0) yields the maximum distance that f is above g.
Note that f � g may not need to belong to F if both g and f
belong to that class of functions.
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B. Arrival Curve
Let F (t) be the input flow and let F ∗(t) be the output

flow of a link. These functions count the number of bytes that
arrived at time t at the head-end and the tail-end node of a
link, respectively.

An arrival curve α(t) gives an upper bound on the cu-
mulative amount of data that can arrive within an interval of
duration t from the input flow F (s). That means

α(t) ≥ (F (s+ t)− F (s)) for s ≥ 0. (6)

From this follows α(0) = 0. For s = 0 we get α(t) ≥ F (t).
Furthermore, if F is given, a lower bound for α is given by
F �F . A simple arrival curve consists of an initial data burst
of size b and a maximum rate r. It is illustrated in Figure 1.

C. Minimum Service Curve
The output flow at the tail-end node of the link is con-

strained by the input flow and the ability of the link to transmit
data. The latter is described by a minimum service curve β(t).
Given an input flow F (t), the minimum service curve β(t)
allows to compute a lower bound on the output flow

F
∗
(t) ≥ (F ⊗ β)(t), (7)

i.e., F ∗(t) ≥ F (t − s) + β(s) holds for at least one 0 ≤
s ≤ t. Assuming that the head-end node has sufficient data to
send between 0 ≤ t ≤ t0, then β(t) describes the minimum
amount of traffic arrived at the tail-end node at time t.

The transmission ability of communication links can often
be described by a rate-latency curve featuring an initial delay
of T time and a constant rate R as depicted in Figure 1. The
initial delay T models the processing delays of the head- and
tail-end nodes of a link and the propagation delay between
them; thus, a byte arrived at a non-backlogged head-end node
at time t shows up at the tail-end node not later than t+T . The
constant rate R models a minimum transmission capacity of
the link. In some papers, the minimum service curve is called
just service curve.

Fig. 1: The arrival curve α and a minimum service curve β allow for the computation
of a maximum backlog v(α, β), maximum virtual delay h(α, β), and a maximum
output bound α∗.

D. Backlog, Virtual Delay, and Output Bound
The backlog in the system is the amount of data that has

already arrived at the sender but has not yet been received by
the receiver. It is bounded by the vertical deviation v(α, β)
between the arrival curve α and the service curve β. It is
illustrated in Figure 1 and can be computed as

v(α, β) = (α� β)(0). (8)

The maximum virtual delay experienced by the data is
bounded by the maximum horizontal deviation h(α, β) be-
tween the arrival curve α and the service curve β. It is
illustrated in Figure 1 and can be computed as

h(α, β) = inf
t≥0
{(α� β)(−t) ≤ 0}. (9)

In the following we refer to this formula by the algorithm
DELAYBOUND(α, β).

The output flow F ∗(t) may be used as input flow for
another link. Therefore, it is useful to give a bound α∗ for
that flow so that α∗(t) ≥ F ∗(t + s) − F ∗(s) holds for all
s ≥ 0. Such an output bound can be computed as

α
∗
(t) = α� β(t). (10)

It is quite coarse because only a minimum service curve is
given, i.e., the transmission capability of the link is not limited.
In theory, the maximum backlog could be transmitted at once
immediately followed by new traffic arriving at the head-end
node of the link. This presents a worst-case that is exactly
bounded by α∗ which is also illustrated in Figure 1.

E. Maximum Service Curve
Given an input flow F (t), the maximum service curve β(t)

allows to compute an upper bound on the output flow

F
∗
(t) ≤ (F ⊗ β)(t) (11)

because F ∗(t) ≤ F (t − s) + β(s) must hold for any
0 ≤ s ≤ t. The maximum service curve β(t) describes the
maximum amount of traffic arrived at the tail-end node at time
t. It may also be expressed by a rate-latency curve. However,
the interpretation is different. A byte arrived at a head-end node
at time t can show up at the tail-end node not earlier than t+T .
The constant rate R models a maximum transmission capacity
of the link.

Figures 2 and 3 show two different maximum service
curves β. The one in Figure 2 reveals the same delay T as
the minimum service curve β and differs only by a larger rate
R. In contrast, the maximum service curve β in Figure 3 differs
from the minimum service curve both by a lower delay T and
a larger rate R.

Fig. 2: The minimum service curve differs from the maximum service curve only by
its rate R.

Fig. 3: The minimum service curve differs from the maximum service curve by its
rate R and delay T .
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F. Lower Output Bound due to Maximum Service Curves
The arrival curve α(t) is an upper bound on the traffic

F (t) arrived at the head-end node at time t and the maximum
service curve β provides an upper bound on the transmission
capability of a link. They allow for the computation of an
upper bound on the traffic F ∗(t) arrived at the tail-end node
by (α⊗ β)(t). The minimum service curve β also provides a
lower bound on the output traffic F ∗(t). Therefore, a tighter
bound of the output flow can be calculated by

α
∗
(t) = ((α⊗ β)� β)(t). (12)

It is lower than the one given in Equation (10). Figure 2
shows that this output bound can be even tighter than the one
for the input flow if the maximum service curve differs from
the minimum service curve only by its rate R. According to
Figure 3, it can also be larger than α(t) and close to the
output bound given by Equation (10). The latter phenomenon
is observed because the maximum service curve deviates a lot
from the minimum service curve.

Schmidt and Zdarsky [14] showed that the output bound
in Equation (12) can be improved by

α
∗
(t) = (((α⊗ β)� β)⊗ (β ⊗ δ−L))(t). (13)

whereby β⊗δ−L is a horizontal translation of the maximum
service curve such that it becomes positive only for t > 0; in
other words, the delay T of the service curve is removed. This
additional convolution accounts for the fact that the maximum
service curve has only a finite rate R. Figures 2 and 3 illustrate
the effect. The bound for the output flow increases only with
the maximum rate of the maximum service curve, bursts are
not possible because any link speed is finite.

G. Multiplexing of Flows
When two flows f0 and f1 with arrival curves α0 and α1

are multiplexed on a link, they share this link’s capacity. If
the link provides a maximum service curve of β, then both
flows experience that curve as maximum service curves β0
and β1. However, the experienced minimum service curves
can be lower. If f0 is prioritized over f1 and β is strict2, then
f0 experiences β0 = β as minimum service curve while f1
experiences

β1 = [β − α0]
+ (14)

as “left-over” minimum service curve β1 which has a larger
delay and a lower rate than β. This is depicted in Figure 4.
It leads to a larger virtual delay h(α1, β1) for f1 compared to
the virtual delay h(α0, β0) of f0. Nevertheless, the maximum
backlog v(α0, β0) of f0 may still be larger than the one of
f1 (v(α1, β1)). As the minimum service curve β1 of f1 is
substantially lower than its maximum service curve β1, the
output of f1 may be more bursty than its input flow. We
observe that in Figure 3 by the fact that all three differently
computed output curves of f1 quickly exceed their input curve.

Scheduling influences how capacity is shared among com-
peting flows. If the scheduling discipline is unknown, priority
scheduling must be assumed to guarantee bounds, which
is called blind multiplexing [4, Sect. 6.2.1]. If the service
discipline is first-in-first-out (FIFO), the left-over service curve
β1 is larger than for priority scheduling [4, Sect. 6.2.2].

2We say that a system offers a strict service curve β to a flow if, during
any backlogged period of duration u, the output of the flow is at least equal
to β(u). [4, Def. 1.3.2]

Fig. 4: Flows f0 and f1 are multiplexed on a common link whereby f0 is served
with absolute priority over f1.

III. PERFORMANCE ILLUSTRATION
We perform experiments using the DelayLyzer [15] to show

the impact of various parameters on delay bounds and backlog.
We consider two competing flows f0 and f1, each of which has
a rate of r0 = r1 = 40 Mb/s and a burst size of b0 = b1 = 100
kB by default. These parameters constitute arrival curves α0

and α1.

A. Impact of Priority Scheduling on Delay Bounds
We multiplex f0 and f1 onto a single link l with a rate of

R = 100 Mb/s and a delay of T = 1 ms. These parameters
constitute the maximum (and minimum) service curve β = β
of the link. We vary the rates and burst sizes of f0 and f1
and evaluate their impact on delay bounds. First we compute
the delay bound D(f0 + f1) for the aggregate consisting of
f0 and f1. Then we assume that f0 is served with priority
over f1 (idealized with work-conserving service interruption)
and compute the delay bounds D(f0) and D(f1) for f0 (high-
priority) and f1 (low-priority). These metrics are calculated as
follows:

D(f0 + f1) = h(α0 + α1, β) (15)

D(f0) = h(α0, β) (16)

D(f1) = h(α1, [β − α0]
+
). (17)

1) Constant Overall Traffic: In these series of experiments
we keep the overall traffic aggregate constant but vary the
traffic mix of high- and low-priority traffic by a parameter
0 < λ < 1. First, we keep b0 and b1 at their default values
and set the rates to r0 = λ · 80 Mb/s and r1 = (1 − λ) · 80
Mb/s.

Thus, λ is the rate fraction of f0 in the overall aggregate,
which is the fraction of high-priority traffic in case of priority
scheduling. Figure 5 shows that the delays D(f0+f1), D(f0)
and D(f1) depend on the traffic mix. As the traffic mix
does not affect the characteristics of the overall aggregate,
the delay bound D(f0 + f1) is constant for varying λ and
determined by the overall burst size b and the service curve
β. The delay bound D(f0) for high-priority traffic is also
constant because it depends only on the burst size b0 and
β. It is lower than D(f0 + f1) because we have b0 < b.
In contrast, the delay bound D(f1) for the low-priority traffic
rises with an increasing fraction of high-priority traffic because
this increases the latency T1 and reduces the rate R1 of the
left-over service curve β1. The limit of the low-priority delay
D(f1) for λ → 0 is higher than the delay D(f0) of high-
priority traffic. This is due to the fact that the high-priority
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traffic still comes with a burst b0 although its rate r0 is very
small because the values λ ∈ {0, 1} are not considered in the
figure.

Fig. 5: Impact of traffic mix on delay bounds; f0 is prioritized over f1.

Second, we keep r0 and r1 at their default values and set
the burst sizes to b0 = λ · 200 kB and b1 = (1− λ) · 200 kB.
Thus, λ is the burst fraction of f0 in the overall aggregate.
Figure 5 shows the delay bounds D(f0 + f1), D(f0), and
D(f1). The delay bound D(f0 + f1) is constant for the same
reason as above. The delay bound D(f0) for high-priority
traffic increases linearly with the burst size b0. The delay
bound D(f1) for low-priority traffic does not depend on the
traffic mix. On the one hand, an increased burst size b0 of
high-priority traffic reduces the left-over service curve β1, but
on the other hand it also decreases the burst b1 according to
the experiment setup, which exactly compensates the reduced
service curve.

2) Constant Low-Priority Traffic: The output bound of a
flow serves as input bound when the flow enters another link.
Multiplexing can lead to extended output bounds which are
maximum if flow f0 stops sending when the maximum backlog
of f1 is reached. An output bound is described by a special
curve rather than a single number. However, the backlog of the
flow correlates with the initially increased rate of its output
bound. Therefore, we use the backlog to visualize how the
output bound of a flow can be increased by multiplexing. The
backlog of f1 is computed by

β1 = [β − α0]
+ (18)

B(f1) = v(α1, β1). (19)

Fig. 6: Impact of high-priority traffic on delay bounds and backlog of the low-priority
flow f1.

We keep the rate and the burst of the low-priority flow
f1 constant at its default value. First, we vary the rate r0 =
λ · 40 Mb/s of the high-priority traffic by the scaling factor
0 < λ < 1. Figure 6 shows that the delay and the backlog of
low-priority traffic increases slightly more than linearly with

increasing high-priority traffic rate. Then, we keep the rate of
the high-priority traffic constant at r0 = 40 Mb/s and vary its
burst size by b0 = λ · 100 kB, 0 ≤ λ ≤ 1. Figure 6 shows
that increasing the burst size significantly increases the delay
and the backlog of f1. Thus, multiplexing can increase the
backlog of low-priority traffic and, thereby, its burstiness on
a consecutive link. As a consequence, it is important to take
the effect of multiplexing on prior links into account when
calculating the output bound for a flow.

B. Impact of Multiplexing Multiplexed Traffic on Delay
Bounds

As outlined above, multiplexing of two flows f0 and f1 on
a link l0 may increase the burstiness of the low-priority flow
f1. We consider that f1 is multiplexed on the next link l1 with
another flow f2. The output bound α∗1 of f1 can be computed
according to Equation (13) and may be used as input bound for
f1 on link l1. Thus, the traffic characteristics of f0 influence
the delay experienced by f2 although f0 and f2 do not share
a common link. For ease of computation we assume that f1
enjoys priority over f2. Then, the delay bound for flow f2 can
be computed by

α
∗
1 = ((α1 ⊗ β)� β1)⊗ (β ⊗ δ−T0

) (20)

β2 = [β − α∗
1 ]

+ (21)

D(f2) = h(α2, β2). (22)

We quantify the impact of the traffic characteristics of f0
on the delay of f2 by two experiment series. The two links
l0 and l1 have the same delay T0 = T1 = 1 ms and the
same bandwidth R0 = R1 = 100 Mb/s. The two flows f1
and f2 have the same rate r1 = r2 = 40 Mb/s and burst size
b1 = b2 = 100 kB.

First, flow f0 has a burst size of b0 = 100 kB and its rate
is controlled by r0 = λ · 40 Mb/s, 0 < λ ≤ 1. Figure 7 shows
that an increased rate of f0 clearly increases the delay of f2.
In a similar experiment, we keep the rate of f0 constant at
r0 = 40 Mb/s and control its burst size by b0 = λ · 100 kB,
0 ≤ λ ≤ 1. The figure shows that an increasing burst size of
f0 also increases the delay of f2.

Fig. 7: Impact of traffic characteristics of f0 on delay bounds of f2.

C. The Pay-Bursts-Only-Once Phenomenon
We consider the transmission of a single flow f over two

links l0 and l1 and are interested in the end-to-end delay bound
D(f, (l0, l1)) of the flow. The flow is sent over two consecutive
links l0 and l1. The associated service curves are β(l0) and
β(l1). Link-specific delay bounds D(f, (l0)) and D(f, (l1))
may be computed for the flow. The delay bound D(f, (l0)) is
simple. The delay bound D(f, (l1)) for the second link requires
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the computation of the output bound α∗ of the flow. The end-
to-end delay bound Dlbl(f, (l0, l1)) is computed link-by-link
as the sum of the link-specific delay bounds:

D(f, (l0)) = h(α, β(l0)) (23)

α
∗

= (((α⊗ β(l0))� β(l0))⊗ (β(l0)⊗ δ−T0
) (24)

D(f, (l1)) = h(α
∗
, β(l1)) (25)

D
lbl

(f, (l0, l1)) = D(f, (l0)) +D(f, (l1)). (26)

Another way to compute the delay bound is to compute an
end-to-end flow-specific service curve βe2e which may be used
to calculate an end-to-end delay bound DPBOO(f, (l0, l1))
according to

βe2e = β(l0)⊗ β(l1) (27)

D
PBOO

(f, (l0, l1)) = h(α, βe2e). (28)

If the rate of the first link l0 is larger than the rate of
the second link (R0 > R1), then a burst of the flow may
be shaped twice. In that case, Dlbl(f, (l0, l1)) may exceed
DPBOO(f, (l0, l1)). In fact, some traffic may face a maxi-
mum delay of D(f, (l0)) on link l0 and some other traffic
may experience a maximum delay of D(f, (l1)) on link l1,
but no traffic experiences an end-to-end delay longer than
DPBOO(f, (l0, l1)). This effect is known as “pay-bursts-only-
once” (PBOO).

Fig. 8: Impact of the rate R0 = λ · R1 of the second link on the result of two
different delay bound calculations.

In the following we quantify this effect. The flow has rate
r = 80 Mb/s and burst size b = 200 kB which provides
an arrival curve α. The second link l1 is the rate bottleneck
with R1 = 100 Mb/s and the rate of the first link is varied
by R0 = λ · R1 with 1 ≤ λ ≤ 10, and each link has a
delay of T0 = T1 = 1 ms. This constitutes β(l0) and β(l1).
Figure 8 shows the maximum delay experienced by f on links
l1 and l0 as well as the sum of both, depending on the scaling
parameter λ for the rate R0 of link l0. The delay on link
l0 decreases with increasing bandwidth R0, but the delay on
link l1 increases at the same time. The summarized end-to-
end delay Dlbl(f, (l0, l1)) reveals a maximum. In contrast, the
obtained values for DPBOO(f, (l0, l1)) are independent of the
rate R0 and clearly smaller than the sum of the maximum
delays experienced on individual links.

IV. NETWORK CALCULUS EXTENSIONS FOR NETWORKS
We calculate delay bounds for flows in a network. First,

we outline required network inputs and clarify definitions.
Then, we present three different methods to extend NC from
a single link to an entire network: the Total Flow Analysis
(TFA), a modified TFA (mTFA), and the Separated Flow
Analysis (SFA) that leverage the concept of output bounds.

The TFA and SFA variants were originally presented in [13].
We reformulate the algorithms so that they are easier to
understand for networking engineers and present the improved
mTFA variant. Furthermore, we compare the quality of the
upper bounds obtained by the different variants in various
experiments.

A. Notation
1) Representation of a Network: A communication net-

work is represented by a set of nodes V and a set of directed
communication links E . Standard NC transforms such a rep-
resentation into a graph of linked service nodes, the so-called
server graph, where each link in the communication network
becomes a node. This transformation is common in NC, but
not necessary for our purpose. For the sake of simplicity, we
stick to the topological structure of a communication network
for the algorithm descriptions.

2) Some Useful Definitions: The descriptions of the algo-
rithms require some standard notation about communication
networks. The capacity of a link l is denoted by c(l) and d(l)
is the sum of the processing delay of its head end node and
the propagation delay of the link itself. The set of predecessor
links of a link l is denoted by Pred(l).

The analysis requires that all flows in the network are
known. The source and destination node of a flow f are given
by src(f) and dst(f). A path is a series of directed links
l0, ..., ln. The flow’s path path(f) can be derived from the
forwarding based on the source and destination nodes of the
flow. The function lastLink(f) returns the last link of f within
its path. The predecessor link of a specific flow f on link l
is pred(f, l). The aggregate of all flows sharing a subpath
spanning from link m to link l is denoted by g(m, l) which is
well defined since we consider only a single operational path
between any two nodes in the network.

The arrival curve α(fx) of a flow fx consists of a rate
rx and a burst size bx. The service curve β(ly) of a link ly
consists of a bandwidth Ry and a delay Dy .

B. Output Bounds for Traffic from Predecessor Links
Algorithm 1 computes for a specific link l an output bound

for the traffic aggregate F that is served with blind multiplexing
in a network. To that end, this traffic aggregate is assumed
to be served with low priority and all other traffic is served
with high priority. The algorithm first summarizes the arrival
curves αlow[l] and αhigh[l] for high- and low-priority traffic.
Required arrival curves for sub-aggregates g(m, l) that do not
originate on the same link are recursively computed, assuming
they are served with low priority on previous links to maximize
output bounds. Finally, the left-over service curve βlow[l]
for low-priority traffic is computed, as well as the output
bound of the considered traffic aggregate using the procedure
OUTPUTBOUND; the latter may implement Equation (13).

During its recursive execution, the algorithm calculates and
stores αlow[l], αhigh[l], and βlow[l] as global variables on every
recursively considered link. Some links are visited even more
than once. As the objective is to provide arrival curves and
left-over service curves on the path of a considered flow f ,
the last stored variables must relate to traffic belonging to
F and its competing traffic. To that end, recursive calls to

5



Algorithm 1 LOWPRIOOUTPUTBOUND: computes and stores arrival curve
αlow[l] and minimum service curve βlow[l] for low-priority traffic F on link l and
returns its output bound.

Input: Link l, set of low-priority flows F
αlow[l]← 0
αhigh[l]← 0
{Classify flows with l as first link}

for all fg ∈ g(l, l) do
if l = firstLink(fg) then

if fg ∈ F then
αlow[l]← αlow[l] + α(fg)

else
αhigh[l]← αhigh[l] + α(fg)

end if
end if

end for
{Classify flows with l not as first link}

for all m ∈ Pred(l) do
if g(m, l) \ F 6= ∅ then
αhigh[l]← αhigh[l]+ LOWPRIOOUTPUTBOUND(m, g(m, l) \ F)

end if
if g(m, l) ∩ F 6= ∅ then
αlow[l]← αlow[l]+ LOWPRIOOUTPUTBOUND(m, g(m, l) ∩ F)

end if
end for
βlow[l]← [β(l)− αhigh[l]]

+

Output: OUTPUTBOUND(αlow[l], β(l), βlow[l])

Algorithm 1 must first cover high-priority traffic and then low-
priority traffic. The quantities αlow[l], αhigh[l], and βlow[l] will
be used by following algorithms.

Note that Algorithm 1 terminates only if the paths of
the flows cannot create any cycles. Therefore, the presented
algorithms can be applied to feedforward networks only. This
is a limitation for general routing, but not for Ethernet networks
whose routing usually creates feedforward networks.

C. Total Flow Analysis (TFA)

We provide a reformulation of the TFA presented in [13].
TFA calculates the maximum delay that may be experienced by
a considered flow f on any link along its path and adds these
delays to provide an upper bound for the end-to-end delay
of flow f . Thus, it does not implement the PBOO principle
presented in Section III-C.

TFA calculates per-link delays that are experienced by
the flow of interest f . To minimize obtained delay bounds,
the delay is computed for a maximum aggregate that shares
its path up to the destination of f . This phenomenon was
illustrated in Section III-A2. This assumption is valid if all
traffic within that aggregate is served FIFO. Algorithm 2 first
calls LOWPRIOOUTPUTBOUND for the last link of f with
all the traffic on that link, which calculates the arrival curves
αlow[l] and service curves βlow[l] that are experienced by
aggregates sharing a common path with f up to its destination.
The original version of TFA in [13] uses the line TFA in
Algorithm 2, i.e., FIFO multiplexing is assumed only for the
traffic that shares its path with the flow of interest up to its
destination.

D. Modified Total Flow Analysis (mTFA)

We propose to assume FIFO multiplexing for all traffic on
a link. This is modelled by the line mTFA in Algorithm 2.
This variant is called modified TFA (mTFA) and reduces link-
specific delays compared to the TFA variant.

Algorithm 2 TFA_DELAYBOUND: computes end-to-end delay bound for flow f
according to TFA. Either Variant TFA or Variant mTFA is applicable.

Input: f : flow for which the delay bound is calculated; αlow[l], βlow[l]:
global variables for l ∈ path(f)

LOWPRIOOUTPUTBOUND(lastLink(f), g(lastLink(f), lastLink(f))
delay ← 0
for all l ∈ path(f) do
< TFA : delay ← delay + h(αlow[l], βlow[l]) >
< mTFA : delay ← delay + h(αlow[l] + αhigh[l], β(l)) >

end for
Output: End-to-end delay delay for flow f .

E. Separated Flow Analysis (SFA)
We provide a reformulation of the SFA presented in [13].

Algorithm 3 shows pseudo code for SFA. SFA calculates the
end-to-end delay for a considered flow f on the basis of
an end-to-end minimum service curve. This is computed by
convoluting the minimum service curves for f on any link.
They are determined by subtracting from the maximum service
curve of a link the input bounds of the other traffic that shared
the link with the considered flow f . These are again calculated
using LOWPRIOOUTPUTBOUND. SFA implements the PBOO
principle. However, the approach considers on each link any
other traffic than f as high-priority so that the left-over service
curve for f is rather low.

Algorithm 3 SFA_DELAYBOUND: computes end-to-end delay bound for flow f
according to SFA.

Input: f : flow for which the delay bound is calculated
β ← e⊗
for all l ∈ path(f) do
αhigh ← 0
for all fg ∈ g(l, l) do

if l = firstLink(fg) AND fg 6= f then
αhigh ← αhigh + α(fg)

end if
end for
for all m ∈ Pred(l) do
αhigh ← αhigh+ LOWPRIOOUTPUTBOUND(m, g(m, l) \ f)

end for
βlow ← [β(l)− αhigh]

+

β ← β ⊗ βlow

end for
Output: End-to-end delay h(α(f), β) for flow f .

F. Comparison of the TFA and the SFA Method
We consider an example with two links l0 and l1 and with

two flows f0 and f1. The flow f1 crosses both link l0 and l1
while f0 crosses only one of them. Both flows have a burst size
of b0 = b1 = 100 kB and their overall rate is r = 80 Mb/s.
In our experiments, we control the rate of f0 by r0 = λ · r,
0 < λ < 1. We calculate the delay bound with TFA, mTFA,
and SFA and compare the results.

Fig. 9: R0 = 100 Mb/s, f0 crosses l1.
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Fig. 10: R0 = 100 Mb/s, f0 crosses l0.

Fig. 11: R0 = 150 Mb/s, f0 crosses l0.

1) Equal Bandwidths and Other Traffic on Last Link: In
the first experiment, both links have a bandwidth of R0 =
R1 = 100 Mb/s and a delay of T0 = T1 = 1 ms.

Flow f0 crosses only link l1. Figure 9 shows that TFA and
mTFA lead to the same low delay while the delay computed
with SFA increases with an increasing rate fraction of f0. This
is because SFA assumes that f1 is scheduled with less priority
than f0 while TFA and mTFA assume that f0 and f1 are
scheduled in a FIFO manner.

2) Equal Bandwidths and Other Traffic on First Link: In
the second experiment, we use the same network, but flow f0
crosses only link l0. Figure 10 shows that SFA computes about
the same large delays as before in Section IV-F1.

The delay computed by TFA even exceeds the one calcu-
lated by SFA because it cannot aggregate f0 and f1 for FIFO
scheduling. The delay values of mTFA are somewhat larger
than in the previous experiment. They are larger than those
for SFA if the rate fraction of r0 is low, but they are lower
if the rate fraction of r0 is high. This is due to the FIFO
scheduling assumption of mTFA on any link for any traffic
while SFA assumes low priority only for the flow of interest.

3) Unequal Bandwidths and Other Traffic on First Link:
In the third experiment, link l0 has an increased bandwidth of
R0 = 150 Mb/s, all other parameters are like in the experiment
above (Section IV-F2).

Figure 11 illustrates that the delay values of TFA are lower
than in the experiment before which is due to the increased
bandwidth on link l0. We make the same observation for SFA.
Its delay bounds are lower than those of mTFA for a larger
range of rate fractions of f0 because it leverages the PBOO
phenomenon.

V. CONCLUSION
In this paper we have revisited simple extensions of Net-

work Calculus (NC) from a single link to an entire network
that are applicable for feed-forward networks such as Ethernet.
We consider FIFO multiplexing in the network, but algorithms

assume high priority for certain sub-aggregates to compute
output bounds.

We explained NC for a single flow on a single link,
then multiplexing of a high-priority flow and a low-priority
flow for both priority and FIFO scheduling, and illustrated
performance tradeoffs. For the NC-based investigation of net-
works, we considered the TFA and the SFA approach and
proposed another modified TFA (mTFA). The Total Flow
Analysis (TFA) assumes FIFO for some sub-aggregates for
the calculation of link-specific delay bounds, which reduces
bounds for end-to-end delay. mTFA uses this principle even
more. The advantage of the Separated Flow Analysis (SFA) is
the fact that it implements the pay-bursts-only-once (PBOO)
idea which improves delay bounds compared to TFA under
some conditions. Our experiments showed that mTFA leads
to tighter delay bounds than TFA. mTFA outperforms SFA in
some cases as it makes use of the FIFO scheduling assumption
where possible. In other cases, SFA outperforms mTFA since it
leverages PBOO. Thus, the minimum of SFA and mTFA may
be used for simple delay calculation in networks with FIFO
service.
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