
Analysis of the Message Waiting Time for the
FioranoMQ JMS Server

Michael Menth and Robert Henjes
Department of Distributed Systems, Institute of Computer Science, University of Würzburg, Germany

Email: {menth,henjes}@informatik.uni-wuerzburg.de

Abstract— The Java messaging service (JMS) is a means to or-
ganize communication among distributed applications according
to the publish/subscribe principle. If the subscribers install filter
rules on the JMS server, JMS can be used as a message routing
platform, but it is not clear whether its message throughput
is sufficiently high to support large-scale systems. We perform
measurements for the FioranoMQ JMS server and derive a
simple model for its message processing time that takes message
filters and the message replication grade into account. Then, we
analyze the JMS server capacity and the message waiting time for
various application scenarios. We show that the message waiting
time is not an issue as long as the server throughput is sufficiently
high. Finally, we assess the capacity of two different distributed
JMS architectures whose objective is to increase the capacity of
the JMS beyond the limit of a single server.

I. I NTRODUCTION

The Java messaging service (JMS) is a communication
middleware for distributed software components. It is an
elegant solution to make large software projects feasible and
future-proof by a unified communication interface which is
defined by the JMS API provided by Sun Microsystems [1].
Hence, a salient feature of JMS is that applications do not need
to know their communication partners, they only agree on the
message format. Information providers publish messages to
the JMS server and information consumers subscribe to certain
message types at the JMS server to receive a certain subset
of these messages. This is known as the publish/subscribe
principle. When messages must be reliably delivered only to
subscribers who are presently online, the JMS in the persistent
but non-durable mode is an attractive solution for the backbone
of a large scale real-time communication applications. For
example, some user devices may provide presence information
to the JMS. Other users can subscribe to certain message types,
e.g., the presence information of their friends’ devices. For
such a scenario, a high message routing platform needs filter
capabilities and a high capacity to be scalable for many users.
In particular, the throughput capacity of the JMS server should
not suffer from a large number of clients or filters.

In this paper we investigate the maximum throughput of the
FioranoMQ JMS server implementation [2] by measurement
and derive a model for the message processing time depending
on the number of installed filters and the replication grade
of a message. The model is useful to predict the server

This work was funded by Siemens AG, Munich. The authors alone are
responsible for the content of the paper.

throughput in practice we investigate different application
scenarios. We study the message waiting time based on an
M/G/1−∞ approximation and perform a sensitivity analysis
with respect to the variability of the message replication grade.
The analysis shows that the message waiting time is low as
long as the server throughput is sufficiently high since the
message replication grade does not induce too much variance.
Finally, we present two simple distributed architectures based
on conventional JMS servers that increase the JMS capacity
beyond the capacity provided by a single server and compare
their usefulness for different parameter settings.

The paper is organized as follows. In Section II we present
JMS basics, that are important for our study, and consider
related work. Section III presents our test environment, mea-
surement methodology, and results that we use to derive a
an analytical model for the message service time. In Section
IV we apply this model to predict the server throughput for
various application scenarios, we calculate the distribution of
the message waiting time, and compare the system throughput
of two new distributed architectures. Finally, we summarize
our work in Section V and give an outlook on further research.

II. BACKGROUND

In this section we describe the Java messaging service (JMS)
and discuss related work.

A. The Java Messaging Service

Messaging facilitates the communication between remote
software components. The Java Messaging Service (JMS)
standardizes this message exchange. The so-called publishers
generate and send messages to the JMS server, the so-called
subscribers consume these messages – or a subset thereof
– from the JMS server, and the JMS server acts as a relay
node [3], which controls the message flow by various message
filtering options. This is depicted in Figure 1. Publishers and
subscribers rely on the JMS API and the JMS server decouples
them by acting as an isolating element. As a consequence,
publishers and subscribers do not need to know each other. The
JMS offers several modes. In the persistent mode, messages
are delivered reliably and in order. In the durable mode,
messages are also forwarded to subscribers that are currently
not connected while in the non-durable mode, messages are
forwarded only to subscribers who are presently online. Thus,
the server requires a significant amount of buffer space to
store messages in the durable mode and it achieves a larger

c©IEEE,26th IEEE International Conference on Distributed Computing Systems (ICDCS), Lisbon, Portugal, July 2006 – page 1

throughput in the non-durable mode. In this study, we only
consider the persistent but non-durable mode.

1

2

3

n

1

2

3

m

SubscribersPublishers

Message Flow

Filters Replication
Grade

JMS
Server

Fig. 1. The JMS server decouples publishers and subscribers.

Fixed Header Fields Application Properties Application Data

JMS Message

Header Body

Fig. 2. JMS message structure.

Information providers with similar themes may be grouped
together and publish to a so-called common topic; only those
subscribers having subscribed for that specific topic receive
their messages. Thus, topics virtually separate the JMS server
into several logical sub-servers. Topics provide only a very
coarse and static method for message selection. In addition,
topics need to be configured on the JMS server before system
start. Filters are another option for message selection. A
subscriber may install a message filter on the JMS server,
which effects that only the messages matching the filter rules
are forwarded instead of all messages in the corresponding
topic. Each subscriber has only a single filter. In contrast to
topics, filters are installed dynamically during the operation
of the server. A JMS message consists of three parts that are
illustrated in Figure 2: the message header, a user defined
property header section, and the message payload itself [1].
So-called correlation IDs are ordinary 128 byte strings that
can be set in the header of JMS messages. Correlation ID
filters try to match these IDs whereby wildcard filtering is
possible, e.g., in the form of ranges like[#7;#13]. Several
application-specific properties may be set in the property
section of the JMS message. Application property filters try
to match these properties. Unlike to correlation ID filters,a
combination of different properties may be specified which
leads to more complex filters with a finer granularity. After
all, topics, correlation ID filtering, and application property
filtering are three different possibilities for message selection
with different semantic granularity and different computational
effort.

B. Related Work

The JMS is a wide-spread and frequently used middleware
technology. Therefore, its throughput performance is of gen-
eral interest. Several papers address this aspect already but
from a different viewpoint and in different depth.

The throughput performance of four different JMS servers
is compared in [4]: FioranoMQ [2], SonicMQ [5], TibcoEMS
[6], and WebsphereMQ [7]. The study focuses on several
message modes, e.g., durable, persistent, etc., but it doesnot
consider filtering, which is the main objective in our work. The
authors of [8] conduct a benchmark comparison for the Sun
OneMQ [9] and IBM WebsphereMQ. They tested throughput
performance in various message modes and, in particular,
with different acknowledgement options for the persistent
message mode. They also examined simple filters but they did
not conduct parametric studies, and no performance model
was developed. The objective of our work is the develop-
ment of such a performance model to forecast the maximum
message throughput for given application scenarios. In [10]
the memory requirements of different filtering algorithms for
pub/sub systems were studied theoretically and experimentally.
A proposal for designing a “Benchmark Suite for Distributed
Publish/Subscribe Systems” is presented in [11] but without
measurement results. The setup of our experiments is in line
with these recommendations. General benchmark guidelines
were suggested in [12] which apply both to JMS systems
and databases. However, scalability issues are not considered,
which is the intention of our work. A mathematical model
for a general publish-subscribe scenario in the durable mode
with focus on message diffusion without filters is presentedin
[13] and they are validated by measurements in [14]. In our
work a mathematical model is presented for the throughput
performance in the non-durable mode including filters and this
model is validated by measurements. Several studies address
implementation aspects of filters. A JMS server checks for
each message whether some of its filters match. If some of the
filters are identical or similar, some of that work may be saved
by intelligent optimizations. This is discussed, e.g., in [15].
We perform measurements for the FioranoMQ with identical
and different filters and both lead to the same results. Thus,
FioranoMQ does not implement any optimization for several
identical filters.

Apart from single server architectures, there are also dis-
tributed approaches like the one in [16] that intend to increase
the overall scalability of the system concerning throughput
and reliability. We also propose two distributed JMS server
architectures to improve the system scalability but in contrast
to this approach, our approach is based on off-the-shelf JMS
components.

III. M EASUREMENTRESULTS

In this section, we investigate the throughput of the Fio-
ranoMQ JMS server by measurements. First, we explain the
experiment setup, give a summary of previous measurement
results, and conduct parameter studies including filters to
explore their impact on the JMS server throughput. Finally,

c©IEEE,26th IEEE International Conference on Distributed Computing Systems (ICDCS), Lisbon, Portugal, July 2006 – page 2

we present a simple model for the message processing time
at the JMS server and validate them by our measurements.

A. Experiment Setup and Measurement Methodology

For reasons of comparability and reproducibility we accu-
rately describe our testbed and our measurement methodology.

1) Testbed:Our test environment consists of five computers
that are illustrated in Figure 3. Four of them are production
machines and one is used for control purposes, e.g., controlling
jobs like setting up test scenarios and starting measurement
runs. The four production machines have a 1 Gbit/s network
interface which is connected to one exclusive Gigabit switch.
They are equipped with 3.2 GHz single CPUs and 1024 MB
system memory. Their operating system is SuSe Linux 9.1
in standard configuration. To run the JMS environment we
installed Java SDK 1.4.0, also in default configuration. The
control machine is connected over a 100 Mbit/s interface to
the Gigabit switch.

Measurement
(3.2 GHz, 1GB RAM)

Measurement
(3.2 GHz, 1GB RAM)

Measurement
(3.2 GHz, 1GB RAM)

Measurement
(3.2 GHz, 1GB RAM)

Controlling

1 Gbit/s Link
100 Mbit/s Link

Gigabit-Switch

Fig. 3. Testbed environment.

We installed the FioranoMQ version 7.5 server components
as JMS server software. We used the vendor’s default con-
figuration as delivered with the test version. Our publisher
and subscriber test clients are derived from Fiorano’s example
Java sources for measurement purposes. Each publisher or
subscriber is realized as a single Java thread, which has
an exclusive connection to the JMS server component. A
management thread collects the measured values from each
thread and appends these data to a file in periodic intervals.
In our experiments one machine is used as a dedicated JMS
server, the publishers run on one or two exclusive publisher
machines, and the subscribers run on one or two exclusive
subscriber machines depending on the experiment. If two
publisher or subscriber machines are used, the publisher or
subscriber threads are distributed equally between them.

2) Measurement Methodology:Our objective is to measure
the capacity of the JMS server. Therefore, we load it in all
our experiments closely to 100% CPU load and verify that
no other bottlenecks like system memory or network capacity
exist on the server machine, i.e., that they have a utilization
of at most 75%. The publisher and subscriber machines must
not be bottlenecks, either, and they must not run at a CPU
load larger than 75%. To monitor these side conditions, we
use the Linux tool “sar”, which is part of the “sysstat”
package [17]. We monitor the CPU utilization, I/O, memory,

and network utilization for each measurement run. Without a
running server, the CPU utilization of the JMS server machine
does not exceed 2%, and a fully loaded server must have a
CPU utilization of at least 98%.

Experiments are conducted as follows. The publishers run
in a saturated mode, i.e., they send messages as fast as
possible to the JMS server. However, they are slowed down
if the server is overloaded because publisher side message
queuing is used. To save system processing resources during
the measurement phase, all JMS messages that will be ever
sent by the publisher are created in advance when the publisher
test clients are started. For the same reason, all connections are
established before measurements are taken. Each experiment
takes 100 s but we cut off the first and last 5 s due to
possible warmup and cooldown effects. We count the overall
number of sent messages at the publishers and the overall
number of received messages by the subscribers within the
remaining 90 s interval to calculate the server’s rate of received
and dispatched messages. We call the corresponding rates
the received and dispatched throughput and their sum the
overall throughput. For verification purposes we repeat the
measurements several times but their results hardly differsuch
that confidence intervals are very narrow even for a few runs.

B. Measurement Results

This paper focuses mainly on the investigation for the
message waiting time based on our measurement results
and a performance model. In [18] we performed extensive
measurements according to the above described testbed and
measurement methodology. We first summarize the various
aspects of that study and review then the results which are
important for this paper in more detail.

1) Summary on Previous Measurement Studies:We briefly
summarize the experiments and their results from [?]. We
investigated the maximum message throughput of the server
depending on the number of publishers and subscribers. We
found that a minimum number of 5 publishers must be
installed to fully load the JMS server and so we conducted
the following experiments with at least 5 publishers. When
we increase the number of subscribers without filters, the
messages are forwarded to all of them. If a message is
dispatched toR different subscribers, it is replicated and sentR
times by the JMS server and we callR the replication grade of
the message. Another experiment showed that the message size
has a significant impact on the message throughput. We used a
default message body size of 0 bytes, i.e. the full information is
contained in the message headers. We found that the message
throughput suffers the least from topic filtering, followedby
correlation ID filtering and application property filtering, and
investigated complex AND- and OR-filter rules.

2) Joint Impact of the Number of Filters and the Message
Replication Grade:We have learned from prior experiments
that both the number of filters and the replication grade impact
the JMS server capacity. In this section, we investigate their
joint impact by measurements and present a simple model to
forecast the server performance for a given number of filters

c©IEEE,26th IEEE International Conference on Distributed Computing Systems (ICDCS), Lisbon, Portugal, July 2006 – page 3

and for an expected replication grade. This model is validated
by measurements.

a) Experiment Setup and Measurement Results:We set
up experiments to conduct parameter studies regarding the
number of installed filters and the replication gradeR of the
messages. We use one publisher and one subscriber machine.
Five publishers are connected to the JMS server and send
messages with correlation ID #0 or application property value
#0 in a saturated way. Furthermore,n+ R subscribers are
connected to the JMS server,R of them filter for correlation
ID or application property attribute #0 while the othern
subscribers filter for different correlation IDs. Hence,n+ R
filters are installed altogether. This setting yields a message
replication grade ofR. We choose replication grades ofR∈
{1,2,5,10,20,40} and n∈ {5,10,20,40,80,160} additional
subscribers.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of Correlation ID Filters

O
ve

ra
ll

T
hr

ou
gh

pu
t (

m
sg

s/
s)

Measured Throughput
Analytical Throughput

r = 1

r = 2
r = 5

r = 10
r = 20

r = 40

Fig. 4. Impact of the number of filtersnf ltr and the message replication
gradeR on the overall message throughput in case of correlation ID filters –
measurements and analytical data.

Figure 4 shows the the overall message throughput for
correlation ID filters depending on the number of installed
filters nf ltr =n+R and on the replication gradeR. The solid
lines show the measured throughput. An increasing number
of installed filters reduces obviously both the received and
overall message throughput of the system and an increasing
replication grade increases the overall system performance
to a certain extent. Similar measurements are obtained for
application property filtering. The basic performance behavior
is the same, but the absolute overall message throughput is
about 50% compared to the one of correlation ID filters. We
get the same results for both experiments if all then non-
matching filters search for the same value, e.g. for #1, and if
they look for different values, e.g. for #1, ..., #n. Thus, we
cannot find any throughput improvement if equal filters are
used instead of different filters [15].

b) A Simple Model for the Message Processing Time:
We assume that the processing time of the JMS server for
a message consists of three components. For each received
message, there is

• a fixed basic time overheadtrcv independently of filter
installations.

• a fixed time overheadnf ltr ·t f ltr caused by the JMS server
while checking which different filters are matching. This
value depends on the application scenario.

• a variable time overheadR· ttx depending on the message
replication gradeR. It takes into account the time the
server takes to forwardR copies of the message.

This leads to the following meanE[B] of the message process-
ing time B.

E[B] = trcv +nf ltr · t f ltr +E[R] · ttx (1)

c) Validation of the Model by Measurement Data:The
results in Figure 4 show the overall message throughput.
Within time E[B], one message is received andE[R] messages
are dispatched on average by the server. Thus, the received
and overall throughput is given by1

E[B] and E[R]+1
E[B] and the

latter corresponds to the measurement results in Figure 4.
The parametersnf ltr and R for the message processing time
B are known from the respective experiments. We fit the
parameterstrcv, t f ltr , andttx by a least squares approximation
[19] to adapt the model in Equation (1) to the measurement
results. The results are compiled in Table I for correlation
ID and application property filters. Note that both filter types
require different values for all parameters to approximatethe
respective experimental measurements by the model.

TABLE I

OVERHEAD VALUES FOR THE MODEL OF THE MESSAGE PROCESSING TIME

IN EQUATION (1).

overhead type trcv(s) t f ltr (s) ttx(s)
corr. ID filtering 8.52·10−7 7.02·10−6 1.70·10−5

app. prop. filtering 4.10·10−6 1.46·10−5 1.62·10−5

We calculate the message throughput based on these values
and Equation (1) for all measured data points, and plot the
results with dashed lines in Figure 4. The throughput from
our analytical model agrees very well with our measurements
for all numbers of filtersnf ltr and all replication gradesR.
Thus, if we know the the number of installed filtersnf ltr on
the JMS server and the meanE[R] of the message replication
grade in a certain application scenario, we have a model that
allows the prediction of the average message processing time
E[B] and the server capacity in terms of message throughput.

IV. A NALYTICAL PERFORMANCEEVALUATION

Based on the performance model and parameters obtained
in Section III, we investigate now the JMS server capacity in
different application scenarios by a rough average calculation
and the message waiting time by careful queuing theoretical
observations. Finally, we compare design alternatives fordis-
tributed JMS systems regarding their capacity to illustrate the
usefulness of our findings.

A. JMS Server Capacity

To get a feeling for capacity of the FioranoMQ JMS server,
we investigate the mean message processing time depending
on the number of filters and predict the server capacity.

c©IEEE,26th IEEE International Conference on Distributed Computing Systems (ICDCS), Lisbon, Portugal, July 2006 – page 4

1) Average Message Service Time:With Equation (1) it is
clear that the message service time increases linearly withthe
number of filters. Figure 5 illustrates the mean for the message
service timeE[B] depending on the number of filtersnf ltr

and the average replication gradeE[R]. The results are shown
for both correlation ID filtering and for application property
filtering. For small values ofnf ltr , the average message service
time E[B] is dominated by the average replication gradeE[R]
but for large values ofnf ltr the linear growth clearly dominates
the influence of the message replication grade. Note that both
the x- and the y-axis have a logarithmic scale. Thus, the service
time for a message ranges over several orders of magnitude,
which is due to different message replication grades, to the
linear growth ofE[B] with nf ltr , and to filter type specific
values oftrcv, t f ltr , and ttx. Hence, it is strongly application
scenario specific.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

M
ea

n
S

er
vi

ce
 T

im
e

(m
s)

Number of Filters n
fltr

E[R] = 1
E[R] = 10
E[R] = 100

Application Property Filtering

Correlation ID Filtering

Fig. 5. Impact of the number of filtersnf ltr , the average replication grade
E[R], and the filter type on the average message service timeE[B].

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

S
er

ve
r

C
ap

ac
ity

 λ
m

ax
 (

m
sg

s/
s)

Number of Filters n
fltr

E[R] = 1
E[R] = 10
E[R] = 100

Fig. 6. Impact of the number of filtersf nf ltr and the average replication
gradeE[R] on the server capacityλ max for a maximum server CPU utilization
of ρ =90%.

2) Server Capacity:We define the server capacity by the
maximum supportable load in terms of messages per second.
If we allow a server CPU utilization ofρ , we can compute
the server capacity in terms of received message throughput

by

λ max =
ρ

E[B]
(2)

Figure 6 shows the server capacity for a maximum server
CPU utilization of 90% for the same application scenarios like
above. Figure 6 shows the server capacityλ max depending on
the same parameters like above but for the sake of clarity
we omitted the results for application property filtering. Like
the service time, the server capacity ranges also over several
orders of magnitude due to Equation (2). It is obvious that the
server capacity decreases both with an increasing number of
filters nf ltr and with an increasing average replication grade
E[R]. Filters protect the subscribers from undesired messages,
they reduce the replication grade which limits the network
traffic and improves potentially the server capacity. However,
the latter objective is not always achieved. This is also shown
in Figure 6: A message replication grade ofE[R]=10 (100)
without filters effects the same capacity reduction like a
message replication grade ofE[R] = 1 and nf ltr = 22 (240)
filters.

This leads to the question: when should a filter be applied
to increase the server throughput? We consider an information
consumerq that has installednq

f ltr filters on the server. Fur-
thermore, we assume that these filters receive the proportion
pq

matchof all messages. On the one hand, the filters increase the
message processing time bynq

f ltr · t f ltr but on the other hand,
they reduce it by(1−pq

match) · ttx. Thus, these filters increase
the server capacity if the following inequality holds.

nq
f ltr · t f ltr < (1−pq

match) · ttx (3)

Taking the values of Table I into account, a single or two
correlation ID filters (nq

f ltr ∈ {1,2}) should be used if their
match probability is smaller than 58.7% or 17.4%, respec-
tively. Three or more filters per consumer slow down the server
more than forwarding any message if no filters are set. A
single application property filter (nq

f ltr =1) should be used if
its match probability is smaller than 9.9%. Like above, two or
more filters per consumer cannot lead to a capacity increase of
the JMS server. However, filters are primarily used to protect
the consumers against too many unwanted messages and the
network against overload.

B. Analysis of the Message Waiting Time

The objective of this section is the investigation of the
message waiting time. We model first the JMS server by
a simple queueing system and discuss various distribution
models for the message replication grade which impacts the
variability of the service time. Then, we study the mean, the
distribution, and in particular the 99% and the 99.99% quantile
of the message waiting time depending on the average server
utilization.

1) A Simple Queuing Model for JMS Servers:With our ver-
sion of FioranoMQ, the major part of the messages are queued
at the publisher site due to a kind of push-back mechanism.
As a consequence, we did not observe any message loss due to

c©IEEE,26th IEEE International Conference on Distributed Computing Systems (ICDCS), Lisbon, Portugal, July 2006 – page 5

buffer overflow at the JMS server. In our experiments, we used
permanently sending publishers that were only slowed down
by the push-back mechanism of the JMS server. However,
in reality, the arrival process is stochastic, i.e., the publishers
do not send in a saturated manner. If the JMS server is not
overloaded and if its message buffer is large enough to absorb
all arriving messages, we can well approximate the complex
overall system by a single message queue at the JMS server
site. This is depicted by Figure 7. The arrival rateλ =∑0≤i<n λi

for that queue is the sum of the message ratesλi from all
publishers.

Approximation
n Publishers m Subscribers

n m

iλ

∑= iλλ

),(RnB fltr

Fig. 7. A simple queueing model for a JMS server:M/GI/1−∞.

Furthermore, we assume a Poisson model for the arrival
process in the busy hour, i.e., the inter-arrival times are expo-
nentially distributed and the message arrival rate is denoted by
λ . This is a reasonable assumption since technical processes
are often triggered by human beings. Messages are served
sequentially by the server with their processing timeB. This
random variable has a general distribution. Thus, we can model
the system by anM/G/1−∞ queue. The first and second
moment of the message waiting time in this queueing system
is given by

E[W] =
λ ·E[B2]

2· (1−ρ)
(4)

E[W2] = 2·E[W]2 +
λ ·E[B3]

3· (1−ρ)
with (5)

ρ = λ ·E[B] (6)

being the utilization of the server [20].
2) Model for the Message Service Time:The formulae for

the first two moments of the message waiting time (Equations
(4) and (5)) require the first three moments of the message
service time. The service timeB for a message is composed of
a constant partD=trcv+nf ltr ·t f ltr and a variable partV=R·ttx
such that the first three moments can be calculated by

E[B] = E[D+V] = D+E[R] · ttx (7)

E[B2] = E[(D+V)2] = D2 +D · ttx ·E[R]

+t2
tx ·E[R2] (8)

E[B3] = E[(D+V)3] = D3 +3·D2 · ttx ·E[R]

+3·D · t2
tx ·E[R2]+ t3

tx ·E[R3] (9)

To conduct a parameter study of the waiting time distribution
depending on the meanE[B] of the service timeB and its
coefficient of variation

cvar[B] =

√

E[B2]−E[B]2

E[B]
, (10)

we calculate the requiredE[R] from Equation (7), and use
E[R] and Equation (8) to calculateE[R2]. Depending on
the appropriate model for the message replication gradeR,
we get E[B3] by using Equation (9) and the third moment
of the respective distribution for the replication grade. In
the following, we discuss various distributions to model the
replication gradeR.

a) Deterministic Distribution:If the replication grade is
constant, sayr, the distribution of the message processing
time B is also deterministic and its coefficient of variation
is cvar[B]=0. Furthermore, the second and third moments of
the message replication grade are

E[R2] = E[R]2 (11)

E[R3] = E[R]3. (12)

This model is very static and probably not appropriate to
characterize real world scenarios.

b) Scaled Bernoulli Distribution:With a probability of
pmatch, a message is forwarded by allnf ltr filters and with a
probability of 1−pmatch, the message is forwarded not at all.
This can be modelled by a scaled Bernoulli distribution. The
corresponding first two moments are

E[R] = pmatch·nf ltr (13)

E[R2] = pmatch·n2
f ltr (14)

The model parameters can be calculated vice-versa bynf ltr =
E[R2]
E[R] and pmatch=

E[R]
nf ltr

. Furthermore, the third moment is

E[R3] =
E[R2]2

E[R]
. (15)

We are interested in the coefficient of variationcvar[B] of the
message service time which is based on a message replication
grade which is distributed according to this scaled Bernoulli
distribution. We calculate it using Equations (10), (7), and (8).
Figure 8 showscvar[B] depending on the number of filtersnf ltr ,
the match probabilitypmatch, and the filter type. The coefficient
of variation cvar[B] converges for an increasing number of
filters to values that depend onpmatch and the filter type. The
coefficient of variation is at mostcvar[B]=0.65 and we cannot
find any larger values for any other parameters ofpmatch.

c) Binomial Distribution: The scaled Bernoulli distribu-
tion is probably not realistic enough to model the distribution
of the message replication grade. Now, we assume that the
nf ltr filters match messages independently of each other with
a probability of pmatch. Then, the resulting replication grade
follows a Binomial distribution:

P(R= k) =

(

nf ltr

k

)

· pk
match· (1− pmatch)

nf ltr−k. (16)

c©IEEE,26th IEEE International Conference on Distributed Computing Systems (ICDCS), Lisbon, Portugal, July 2006 – page 6

0 20 40 60 80 100
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Filters n
fltr

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
c va

r[B
] p

match
 = 0.1

p
match

 = 0.3

p
match

 = 0.6

Application Property Filtering

Correlation ID Filtering

Fig. 8. Impact of the number of filtersnf ltr and the match probabilitypmatch
on the coefficient of variationcvar[B] of the message processing timeB for a
replication gradeR distributed according to a scaled Bernoulli distribution.

Furthermore, the second and third moments [21] are

E[R2] = nf ltr · pmatch· (1− pmatch) (17)

E[R3] = E[R]2−E[R2]−E[R] ·E[R2]+2· E[R2]2

E[R]
(18)

We conduct the same study like above and observe in Figure 9
that the coefficient of variationcvar[B] decreases quickly for
an increasing number of filtersnf ltr to values of 0.064 and
0.033, which depends on the filter type.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Filters n
fltr

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
c va

r[B
] p

match
 = 0.1

p
match

 = 0.3

p
match

 = 0.6

Application Property Filtering

Correlation ID Filtering

Fig. 9. Impact of the number of filtersnf ltr and the match probabilitypmatch
on the coefficient of variationcvar[B] of the message processing timeB for a
replication gradeR distributed according to a Binomial distribution.

After all, the second moment of the service time is bound
by Equation (8) and the second moment of the replication
grade (cf. Equations (11), (14), and (17), respectively). Re-
alistic coefficients of variations of the message service time
lie between 0 and 0.2 and coefficients larger than 0.65 are
impossible. Therefore, we work in the following exemplarily
with the values 0, 0.2, and 0.4 because only they cover realistic
scenarios.

3) Average Message Waiting Time:The average message
waiting time at the JMS server can be calculated with Equa-
tion (4). Figure 10 shows it depending on the server utilization
ρ in a specific application scenario withnf ltr =100 correlation

ID filters and a constant replication grade ofR=1. The left
y-axis shows the corresponding waiting time in ms. It is a
trivial result that the average waiting timeE[W] increases
with ρ . We can generalize the result by indicating the waiting
time as a multiple of the average message processing time
E[B] on the right y-axis, which also approximates the mean
queue length in packets. Based on this normalized y-axis, we
can easily compare the average message waiting timeE[W]
from different application scenarios that have different means
E[B] and coefficients of variationscvar[B]. Figure 10 illustrates
that the mean waiting time is sensitive to the coefficient
of variation of the message processing timeB and that it
increases withcvar[B]. Note that the normalized diagram in
Figure 10 provides also a lookup table for the average message
waiting timeE[W] in any application scenario with a matching
coefficient of variationcvar[B].

0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

Server Utilization ρ

A
vg

. M
es

sa
ge

 W
ai

tin
g

T
im

e
(m

s)

10
0

10
1

10
2

A
vg. M

essage W
aiting T

im
e (E

[B
])

c
var

 = 0, 0.2, 0.4

Fig. 10. Impact of the server utilizationρ and the coefficient of variation
cvar[B] of the message service time on the average message waiting time
E[W].

4) Message Waiting Time Distribution:In addition to the
mean of the waiting time, its distribution is of interest.
According to theM/G/1−∞ queuing formulae, the waiting
time probability for a message ispw=ρ . With Equations (4)
and (5) we know the first and second moment of the message
waiting time such that we can calculate the first and second
moment of the waiting timeW1 regarding only delayed calls
by

E[W1] =
E[W]

ρ
, E[W2

1] =
E[W2]

ρ
(19)

The Gamma distribution has a positive range and can be
viewed as the continuation of the exponential and Erlang distri-
bution for coefficients of variations different fromcvar[X]= 1√

k
,

k∈N [22]. We approximate the waiting time distribution of
the delayed callsP(W1 ≤ t) by fitting their two parameters
α = 1

cvar[W1]
and β = E[W1]

α . Thus, we get the waiting time
distribution regarding all calls by

P(W ≤ t) = (1−ρ)+ρ ·P(W1 ≤ t). (20)

This Gamma-approximation is exact for an exponentially
distributed service time and leads to very good approximation
results for other service time distributions [23].

c©IEEE,26th IEEE International Conference on Distributed Computing Systems (ICDCS), Lisbon, Portugal, July 2006 – page 7

Figure 11 shows the complementary distribution function
of the message waiting timeW for a server utilization of
ρ =0.9 and for a coefficient of variation ofcvar[B]=0, 0.2,
and 0.4 on a normalized x-axis. The distribution functions
are clearly shifted towards larger waiting time values with
increasingcvar[B], which is consistent with the results obtained
in Section IV-B.3. The deterministic, the scaled Bernoulli,
and the Binomial distribution coincide forcvar[B] = 0 and
lead, therefore, to the same waiting time distribution of the
messages. Furthermore, we can hardly see any difference
between the waiting time distribution function for the binomial
and the Bernoulli distribution of the replication gradeR. Thus,
we can neglect the exact distribution type of the message
service time and work with its first two moments instead. In
the following, we assume a messages service time based on a
binomially distributed message replication gradeR.

0 10 20 30 40 50 60 70 80
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Message Waiting Time t (E[B])

P
ro

ba
bi

lit
y

P
(W

 >
 t)

Binomial Distribution for R
Scaled Bernoulli Distribution for R

c
var

 = 0.4

c
var

 = 0.2

c
var

 = 0.0

Fig. 11. Impact of the coefficient of variationcvar[B] and the distribution
type of the message replication gradeR on the complementary distribution
function of the message waiting timeW for a server utilization ofρ =0.9.

5) Message Waiting Time Quantile:The p-quantile or p-
percentile Qp[W] specifies the lowest duration for which
P(W ≤ Qp[W]) ≥ p holds. It says “p ·100% of all messages
wait shorter thanQp[W]” and yields thereby a “quasi upper
bound” on W if p is large. Figure 12 shows the 99% and
99.99% quantile of the waiting time on a normalized y-axis
depending on the server utilizationρ and the coefficient of
variation cvar[B] of the message service time. The 99.99%
quantile of the waiting time is substantially larger than the
99% quantile. The quantiles increase with the server utilization
ρ and they are substantially larger than the means of the
waiting timeE[W] in Figure 10. The impact of the coefficient
of variation cvar[B] is notable but the impact of the server
utilization ρ is much larger since the considered coefficients
of variation are all quite small. If we limit the server utilization
to ρ =0.9, the message waiting time is less than 50·E[B], i.e.,
a waiting time of 50·E[B] is not exceeded with a probability
of 99.99%. With that probability a maximum waiting time
of at most 1 s is guaranteed as long asE[B] is smaller than
20 ms1. However, in this case, the maximum server capacity

1If the average replication grade isE[R] = 1 in the above scenario, up
to 1369 or 2845 filters may be installed on the JMS server for application
property or correlation ID filtering, respectively.

is only λ max
ρ=0.9 =45 messages per second which is very low.

Hence, at a server utilization ofρ =0.9 or less, the message
waiting time is not an issue provided that 1 s is tolerable
but a server capacity of 45 msgs/s is not tolerable. Thus, if
a sufficiently high throughput is achieved, the waiting time
is small. Therefore, we neglect the waiting time in the next
section.

0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

Server Utilization ρ

M
es

sa
ge

 W
ai

tin
g

T
im

e
(E

[B
]) c

var
[B] = 0

c
var

[B] = 0.2

c
var

[B] = 0.4

99% Quantiles

99.99% Quantiles

Fig. 12. Impact of the server utilizationρ and the coefficient of variation
cvar[B] of the message service time on the 99% and 99.99% quantiles of the
message waiting time.

C. Performance Comparison of Distributed JMS Server Ar-
chitectures

The capacity of a JMS server is bounded by the performance
of its CPU. If it does not suffice to support a certain message
rate fromn publishers tom subscribers, a distributed architec-
ture might be useful to alleviate the problem. We consider two
basically different simple architectures: publisher-side JMS
server replication and subscriber-side JMS server replication.

1) Publisher-Side JMS Server Replication (PSR):With
publisher-side JMS server replication (PSR), each publisher
has its own local JMS server for which subscribers can register.
The concept is visualized in Figure 13. Each publisher-side
M/G/1−∞ system supports a message rateλi and their
average message replication grade isE[Ri]. Since the messages
are filtered already at the publishers, the traffic load imposed
on the network interconnecting publishers and subscribersis
∑0≤i<n λi ·E[Ri].

A drawback of this distributed PSR architecture is the fact
that all subscribers have to register in parallel forn JMS
servers at distributed publisher sites instead of to a single one.
This disturbs the elegant communication interface of JMS over
a single server. Thus, additional entities must be introduced to
allow a transparent communication like with a single server,
but this is not scope of this paper.

2) Subscriber-Side JMS Server Replication (SSR):With
subscriber-side JMS server replication (SSR), each subscriber
has its own JMS server for which publishers can register. The
concept is visualized in Figure 14. Since the messages are
filtered only at the subscribers, the message rate for each
subscriber-sideM/G/1−∞ system isλ = ∑1≤i≤n λi . Thus,
the overall traffic carried in the network ism· λ . Since m
is an upper bound onRi , SSR produces significantly more
traffic in the network than PSR. Like with PSR, the elegant

c©IEEE,26th IEEE International Conference on Distributed Computing Systems (ICDCS), Lisbon, Portugal, July 2006 – page 8

][11 RE⋅λ

][nn RE⋅λ

1λ

nλ

n Publishers and JMS Servers m Subscribers

Fig. 13. Publisher-side JMS server replication (PSR).

n Publishers m JMS Servers and Subscribers

∑ ⋅
i

ii RE][λ

∑ ⋅
i

ii RE][λ

∑ ⋅
i

ii RE][λ
nm λ⋅

1λ⋅m

Fig. 14. Subscriber-side JMS server replication (SSR).

communication interface of JMS is also compromised by the
SSR architecture because every publisher needs to multicast
its messages to all JMS servers atm different subscriber sites
instead of to a single one. However, this problem is not our
present concern.

3) Capacity Comparison of PSR and SSR:For the perfor-
mance comparison of the both architectures we consider the
following environment. All nodes have the same computation
power. In particular, we assume that they have the same
capacity as the machines in our experiments in Section III
because our numerical study relies on the valuestrcv, t f ltr , and
ttx that were obtained for these machines. Furthermore, the
message ratesλi of all publishers are equal and the average
replication gradesE[Ri] for their messages are the same such
that we can denote them uniformly byE[R]. In addition, each
subscriber hasnf ltr =10 different filters.

For PSR, the capacity of the distributed JMS systemλ max
PSR=

n · min1≤i≤n(λ max
i) is the n-fold multiple of the minimum

of all individual JMS server capacitiesλ max
i . Similarly to

Equation (2), it can be calculated under the above stated
assumptions by

λ max
PSR= ρ ·n·

(

trcv +m·nf ltr · t f ltr +E[R] · ttx
)−1

(21)

Thus, the system capacity depends onn andm and is thereby
application scenario specific.

In case of subscriber-side JMS server replication, the ca-
pacity of the distributed JMS systemλ max=min0≤i<m(λ max

i)
is the minimum of all individual JMS server capacitiesλ max

i .
It can be calculated under the above stated assumptions by

λ max
SSR= ρ ·

(

trcv +nf ltr · t f ltr +E[R] · ttx
)−1

(22)

In contrast toλ max
PSR, the expression forλ max

SSR is independent of
n andm.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

O
ve

ra
ll

S
ys

te
m

 C
ap

ac
ity

 (
m

sg
s/

s)

Number of Publishers n

PSR
SSR

m = 10000

m = 1000

m = 100

m = 10

Fig. 15. Capacity comparison for publisher- and subscriber-side JMS server
replication for a server utilization ofρ =0.9, an average replication grade of
E[R]=1, m subscribers, and correlation ID filtering.

Figure 15 illustrates the impact of the parametersn and
m on the capacitiesλ max

PSR and λ max
SSR of both distributed JMS

systems. The results are calculated for an average replication
grade ofE[R]=1, a maximum server utilization ofρ =0.9,
and correlation ID filtering. The capacityλ max

SSR for SSR yields
a horizontal line since it is independent of the parameters
n and m. The capacity for PSR increases linearly withn
and decreases about reciprocally for large values ofm. PSR
outperforms SSR for medium or large values ofn and for
small or medium values ofm. Note that a largem can reduce
the capacity of a single JMS server so much that waiting time
problems arise. For example, form= 104 and a largen the
distributed system has still a large capacity but the capacity
of a single publisher-side server is only 7 msgs/s leading to
average waiting times of 1 s and to 99.99% quantiles of 10 s.
We get similar results for application property filtering.

The capacity lines in Figure 15 intersect where both Equa-
tions (21) and (22) yield the same results. Thus, we follow
that PSR outperforms SSR if the following inequality holds

n >
trcv +m·nf ltr · t f ltr +E[R] · ttx

trcv +nf ltr · t f ltr +E[R] · ttx
. (23)

It gives a recommendation under which circumstances PSR or
SSR should be implemented to cope with a large number of
publishers or subscribers.

After all, PSR achieves system capacity scalability with
respect to an increasing number of publishers, but the capacity
degrades with an increasing number of subscribers. In contrast,
SSR provides system capacity scalability for an increasing
number of subscribers but its capacity does not scale with an
increasing number of publishers. Hence, neither architecture
yields a viable solution for the general scalability of the
capacity of JMS servers. Therefore, we are working currently
on such a solution.

V. CONCLUSION

In this work, we have investigated the throughput perfor-
mance of the FioranoMQ JMS server. We set up a testbed

c©IEEE,26th IEEE International Conference on Distributed Computing Systems (ICDCS), Lisbon, Portugal, July 2006 – page 9

to measure the throughput for application scenarios with
different message replication gradeR, different numbers of
filters nf ltr , and different filter types. From these results, we
derived a simple model for the message processing time which
provided the base for the further performance evaluation. This
formula is especially useful in practice because it predicts the
maximum message throughput of a JMS server for a planned
application scenario.

We observed from our analytical parameter study that the
values for both the message processing time and the corre-
sponding server capacityλ max in msgs/s range over several or-
ders of magnitude depending on the application scenario. Both
additional filters and unnecessarily sent messages reduce the
JMS server capacity. Thus, we studied this phenomenon and
gave a recommendation for the configuration of subscribers
to maximize the JMS server capacity based on the message
match probability of filters. We modelled the JMS server by
an M/GI/1−∞ queuing system and presented three different
distributions for the message replication grade, which lead to
significantly different variabilities of the message processing
time. We showed that the average message waiting time is
mainly influenced by the server utilization and our sensitivity
analysis showed that the processing time variability playsonly
a marginal role. We used a normalized diagram which can be
used as a lookup table for various application scenarios. The
99.99% quantile gives a “quasi upper bound” on the waiting
time and an estimate on the required buffer space at the JMS
server. Finally, we concluded that extensive waiting timesdo
not occur as long as the server is not overloaded and as long as
its throughput is medium or high. These results are of general
nature and are also valid for other servers than the FioranoMQ.

Finally, we introduced two distributed JMS server architec-
tures: publisher- and subscriber-side server replication(PSR,
SSR). We compared the capacity of both alternatives by the
use of our simple throughput model. The capacityλ max

PSR of
PSR scales well for an increasing number of publishers and
the capacityλ max

SSR of SSR scales well for an increasing number
of subscribers. However, none of them scales well for both
requirements. We gave recommendations for the usage of PSR
or SSR depending on the application scenario.

Currently, we validate our model for other JMS servers than
FioranoMQ [18], [24]–[26]. In addition, we investigate the
message throughput performance of server clusters and work
on concepts to achieve true JMS system scalability regarding
their capacity.

ACKNOWLEDGEMENTS

The authors would like to thank Andre Bondi and Phuoc
Tran-Gia for the fruitful discussions and Sebastian Gehrsitz
and Christian Zepfel for the conducted measurements.

REFERENCES

[1] Java Message Service API Rev. 1.1, Sun Microsystems, Inc., April 2002,
http://java.sun.com/products/jms/.

[2] FioranoMQTM: Meeting the Needs of Technology and Business, Fio-
rano Software, Inc., Feb. 2004, http://www.fiorano.com/whitepapers/
whitepapers_fmq.pdf.

[3] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” inACM Computing Surveys, 2003.

[4] Krissoft Solutions, “JMS Performance Comparison,” Tech.Rep., 2004,
http://www.fiorano.com/comp-analysis/jms_perf_comp.htm.

[5] Enterprise-Grade Messaging, Sonic Software, Inc., 2004, http://www.
sonicsoftware.com/products/docs/sonicmq.pdf.

[6] TIBCO Enterprise Message Service, Tibco Software, Inc., 2004,
http://www.tibco.com/resources/software/enterprise_backbone/message_
service.pdf.

[7] IBM WebSphere MQ 6.0, IBM Corporation, 2005, http://www-306.ibm.
com/software/integration/wmq/v60/.

[8] Crimson Consulting Group, “High-Performance JMS Messaging,” Tech.
Rep., 2003, http://www.sun.com/software/products/message_queue/wp_
JMSperformance.pdf.

[9] Sun ONE Message Queue, Reference Documentation, Sun Mi-
crosystems, Inc., 2005, http://developers.sun.com/prodtech/msgqueue/
reference/docs/index.html.

[10] S. Bittner and A. Hinze, “A Detailed Investigation of Memory Re-
quirements for Publish/Subscribe Filtering Algorithms,” inInternational
Conference on Cooperative Information Systems (CoopIS), Agia Napa,
Cyprus, Oct. 2005, pp. 148–165.

[11] A. Carzaniga and A. L. Wolf, “A Benchmark Suite for Distributed
Publish/Subscribe Systems,” Software Engineering Research Laboratory,
Department of Computer Science, University of Colorado, Boulder,
Colorado, Tech. Rep., 2002. [Online]. Available: \url{http://serl.cs.
colorado.edu/~carzanig/papers/cucs-927-02.pdf}

[12] T. Wolf, “Benchmark für EJB-Transaction und Message-Services,” Mas-
ter’s thesis, Universität Oldenburg, 2002.

[13] R. Baldoni, M. Contenti, S. T. Piergiovanni, and A. Virgillito, “Mod-
elling Publish/Subscribe Communication Systems: Towards a Formal
Approach,” in 8th International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2003), 2003, pp. 304–311.

[14] R. Baldoni, R. Beraldi, S. T. Piergiovanni, and A. Virgillito, “On the
Modelling of Publish/Subscribe Communication Systems,”Concurrency
and Computation: Practice and Experience, vol. 17, no. 12, pp. 1471–
1495, Apr. 2005.

[15] G. Mühl, L. Fiege, and A. Buchmann, “Filter Similarities in Content-
Based Publish/Subscribe Systems,”Conference on Architecture of Com-
puting Systems (ARCS), 2002.

[16] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design andEvaluation
of a Wide-Area Event Notification Service,”ACM Transactions on
Computer Systems, vol. 19, no. 3, pp. 332–383, 2001.

[17] Sysstat Monitoring Utilities, http://perso.wanadoo.fr/sebastien.godard/,
http://perso.wanadoo.fr/sebastien.godard/, Feb. 2004.

[18] R. Henjes, M. Menth, and S. Gehrsitz, “Throughput Performance of Java
Messaging Services Using FioranoMQ,” in 13thGI/ITG Conference on
Measuring, Modelling and Evaluation of Computer and Communication
Systems (MMB), Erlangen, Germany, Mar. 2006.

[19] C. Moler, Numerical Computing with MATLAB. Philadelphia, PA:
Society for Industrial and Applied Mathematic (SIAM), 2004,http:
//www.mathworks.com/moler/chapters.html.

[20] H. Takagi,Queueing Analysis Volume 1: Vacation and Priority Systems.
North-Holland, 1991.

[21] A. Papoulis,Probability, Random Variables, and Stochastic Processes,
2nd ed. McGraw-Hill Book Company, 1984.

[22] A. M. Law and W. D. Kelton,Simulation Modeling and Analysis, 3rd ed.
McGraw-Hill, 2000.

[23] M. Menth, R. Henjes, C. Zepfel, and P. Tran-Gia, “Gamma-
Approximation for the Waiting Time Distribution Function of the
M/G/1−∞ Queue,” in 2ndConference on Next Generation Internet
Networks Traffic Engineering (NGI), Valencia, Spain, Apr. 2006.

[24] R. Henjes, M. Menth, and C. Zepfel, “Throughput Performance of Java
Messaging Services Using Sun Java System Message Queue,” inHigh
Performance Computing & Simulation Conference (HPC&S), Bonn,
Germany, May 2006.

[25] ——, “Throughput Performance of Java Messaging ServicesUsing
WebsphereMQ ,” in 5thInternational Workshop on Distributed Event-
Based Sytems (DEBS) in conjuction with ICDCS 2006, Lisbon, Portugal,
July 2006.

[26] R. Henjes, M. Menth, S. Gehrsitz, and C. Zepfel, “Throughput Perfor-
mance of Popular JMS Servers,” inACM SIGMETRICS (Poster), Sait-
Malo, France, June 2006.

c©IEEE,26th IEEE International Conference on Distributed Computing Systems (ICDCS), Lisbon, Portugal, July 2006 – page 10

