An Algorithmic Framework for Discrete-Time
Flow-Level Simulation of Data Networks

Lasse Jansel?, lvan Gojmeraé , Michael Mentt? ,
Peter Reicht, and Phuoc Tran-Gia

! Telecommunications Research Center Vienna (ftw.)
Donau-City-Str. 1, 1220 Vienna, Austria

2 University of Wirzburg, Institute of Computer Science
Am Hubland, 97074 Wurzburg, Germany

{j ansen, goj ner ac, rei chl }@tw. at,
{ment h, trangi a}@ nf or nat i k. uni - wuer zbur g. de

Abstract. In this paper, we present a comprehensive algorithmic fvariefor
discrete-time flow-level simulation of data networks. Wetfprovide a simple al-
gorithm based upon iterative equations useful for the satimn of networks with
static traffic demands, and we show how to determine pacgstdnd throughput
rates using a simple example network. We then extend thesie équations to
a simulation method capable of handling queue and link dalagynamic traf-
fic scenarios and compare results from flow-level simulat®those obtained
by packet-level simulation. Finally, we illustrate thedeaff between computa-
tional complexity and simulation accuracy which is corigdlby the duration of
a single iteration interval\.

1 Introduction

Simulation has traditionally been an important tool forfpenance evaluation of data
networks, mostly in the form of packet-level simulation bypoying discrete-event
simulation techniques [1]. Every packet arrival and deparat each link is modeled
as a separate event. Although packet-level simulatiohrspiresents the most widely
used approach, the simulation of today’s networks with gy packet rates is often
not feasible, as too many simulation events must be gemnkestn for small intervals
of simulated time.

However, in many cases the overhead of packet-level silonkais not necessary at
all in order to achieve a realistic estimation of networkistes like throughput rates,
queue sizes, or loss probabilities. In those cases, anegffialternative to packet-level
simulation is the simulation of networks at the level of widual flows, for which there
exists a multitude of different techniques, commonly suminea under the termituid
simulationor flow-level simulation

In this paper, we concentrate updiscrete-time flow-level simulatiofraffic is not
modeled in terms of discrete packets but rather in terms afrdirtuous amount of
data. The data is shifted in fixed intervalson predefined routes through the network.
However, to our best knowledge, literature in this field cdearch lacks a discrete,
easy-to-implement formulation of discrete-time flow-lesinulation which is able to
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model end-to-end connections. Addressing this issue,isnpéper, we provide such a
formulation, which additionally allows the network to bensilated at different levels
of detail. We develop the fundamental flow-level simulatitenhniques step by step,
first presenting a simple algorithm for throughput caldolatand then extending this
algorithm to capture network dynamics like link and quegeielay.

The paper is structured as follows: Section 2 gives an ogeroif related work. In
Section 3 we describe the basic equations for calculatiagitire-dependent aggregate
throughput rates and the loss probabilities on the linkd,\wa present a method for
the calculation of the stationary network state in the presef static traffic demands.
Subsequently, in Section 4 we extend these basic equatiGgteharios with dynamic
traffic patterns by introducing queue and link delay modgliection 5 provides a
comparison of flow-level and packet-level simulation resahd demonstrates the in-
fluence of different durations of iteration interval Finally, Section 6 concludes the
paper with summarizing remarks.

2 Related Work

This section provides a brief description of previous wankl aelevant applications of
flow-level simulation. There are two main variants of flowdesimulation. The foun-
dation for thecontinuous-timevariant was given in [2] and [3], and has since been
further developed and widely applied by other authors [4F1E basic principle of
this approach is to model flow rates and rate changes witlomsdidering discrete data
packets. Each flow is assigned a certain transmission naderade reductions due to
bottleneck links are tracked as events in the event chaile&imulator. Although
widely used, under particular circumstances this apprdeshbeen shown to suffer
from the so calledipple effectwhich can cause severe performance degradations con-
cerning computation time. It occurs in networks with cianly overlapping end-to-end
connections and overloaded links, causing rate changesiereproduce themselves
in a circular manner [8, 9].

An alternative to the continuous-time variantilme-stepped fluid simulatiomhich
is the foundation of the simulation method presented in plaiger. Here, the data is
modeled in terms of quantities of a continuous amount of @atah are shifted through
the network at a fixed time step. This model was first propos€id], but the routing
model applied therein is hardly applicable to realistionmks. In particular, a traffic
demand matrix cannot be represented, as end-to-end camshave not been mod-
eled at all.

Another approach which defines the evolution of network daams in terms of
differential equations is used in [11]. End-to-end conivet are modeled as traffic ag-
gregates which enable the simulation of realistic networdt Bouting scenarios. The
equations are numerically solved using the Runge-Kuttardhgn. In this paper, we
use the basic idea from [10], and additionally enable enrerih connections like in
[11]. Furthermore, we provide a clean formulation of diseréme flow-level simula-
tion which is well suited for practical implementation.

The possibility of dynamic traffic rate adjustments and defedeling in the pre-
sented simulation approach allows for multipath routinguations in which traffic
aggregates between individual pairs of nodes are carrizdnviltiple parallel paths.
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Implementing the simulation approach described in thisspape have already evalu-
ated the Adaptive Multi-Path algorithm (AMP) [12, 13] usiogr flow-level simulation
environment (cf. [14, 15]).

Furthermore, the throughput and delay approximation déipiab of this approach
enable more complex elastic traffic models, like e.g. TCHddntegrated into such
a flow-level simulation framework, as the sending rate ofvilsthal sources can be
dynamically adjusted based upon the information about flound-trip time (RTT)
and loss probability on the path, employing differentialatipn models of TCP as
presentedin [11,16,17].

3 Basic Iterative Algorithm

In this section we first clarify the notation, after which weroduce the iterative al-
gorithm that calculates throughput rates and loss proitiabil Finally, we show the
application of this algorithm for the calculation of statayy throughput in a network
with static traffic demands.

3.1 Definitions

The simulation process is based upon shifting data throgmétwork in fixed time
intervals A. In our model, a data rate denotes the total amount of data in a single
iteration interval, normalized by as the time between two successive iteration steps.
In other words, a data rate afin interval A corresponds to an amount of daka, A,
which may represent e.qg. bits, bytes, or equally sized piacke

In the following we list some definitions for reference. Eggsions indexed bjy:]
are time-dependent and calculated in each iteration.

L Set of all links.

A Set of all aggregates.

L*CL Set of links crossed by aggregate A.
A CA Set of aggregates crossing lihk L.

first(a) € L First link on the route of aggregatec A.

next(a,l) € L* Successor link of € L* on the route of aggregatec A;.

sink(a) € L® Virtual link representing the sink of aggregate A and
succeeding the last link af

a Link capacity of link! € L, i.e. data that can be served during a
single iteration intervalA.

pi[n] Loss probability at link € L.

A [n] Arrival rate of aggregate € A at link[ € L.

A%[n] Sending rate of aggregade= A, equal tOAS, st (a) [n].

Ai[n] Sum of all arrival rates at linke L.

6%[n] Throughput of aggregatee A.

A Iteration duration interval, i.e. the time between twoaten steps.
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3.2 lIterative Equations for Discrete-Time Flow-Level Simuation

We assume the network to be empty at initialization time=(0). Each traffic aggregate
a € A has a specific route consisting of a sequence of linksL® along which the
arrival rates\{[n] of this aggregate are shifted in each iteration step. Theathaerival
rate at link/ in iteration step is then:

An] =" Al (1)

a€A;

Based on this sum and the capacityof this link, its loss probability,;[n] can be
calculated for the corresponding iteration stefIhe capacity; of a link / is assumed
to be proportionally partitioned among the competing agares: € A;.

a
= 1———, 0;. 2
pi[n] maX{ WEE } (2)
The arrival rate\ [n] of aggregate: and the loss probability at linkin iteration
stepn determine the arrival ratk;, ., , ; [n+1] of a atits next link at the next iteration
stepn + 1.

)\?Lezt(a,l) [n + 1] = )‘7 [n] : (1 — D [n]) (3)
The throughput of aggregaiss given by

0%[n] = Zink(a) [n]. (4)

3.3 Calculation of Stationary Throughput for Static Traffic Demands

We now use the equations from the previous section to caéctila stationary through-
put rates in settings with static traffic demands. By firstekting the throughput rates
of a small example network analytically, we show that this lba a non-trivial task and
propose an algorithm based upon the iterative equationsiagxée alternative.

Figure 1a shows a triangle network with all link capacitieste ¢ = 1 and three
overlapping aggregates with static, non-adaptive senaites\ = 1, as well. Intuition
might lead to the belief that each aggregate should achi¢gheaghput ofd = 0.5,
as this corresponds to the most reasonable bandwidthbdistm with respect to both
fairness and throughput. However, the analytical calafabf the throughput yields
significantly different results. Due to the symmetricaluratof the example, we assume
that the loss probability is the same on all links. The throughput, which equals the
arrival rate at the second link of each aggregate, can themfressed by = A - (1 —
p)2. The arrival rate of each aggregate at its respective firktdguals\ - (1 — p). As
each link is crossed by two aggregates, i.e. one at its liiba and the other at its
second hop, the following equation must be solvee: A(1 — p) + A(1 — p)2. With
A = landc = 1, and presuming that the loss probability is greater thane@can
calculate the throughput resultingfr 0.38.

While in this simple example we are able to calculate theubhput quite easily,
by solving just one quadratic equation, we would have toesohch more complex
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Fig. 1: Throughput calculation for an triangle network.

sets of nonlinear equations in the case of larger networkenWnstead applying the
proposed iterative equations from the last section to tlaenge network, we observe
in Figure 1b that the stationary throughput of all aggregatmverges at the same point
as the analytical solution, i.e. at the value of about 0.88y @nly a few iterations of
the algorithm.

The exact solution for throughput rates in arbitrary netsos achieved after a
number of iterations which corresponds to the hop count efidhgest possible path
composable of overlapping aggregates in the network. Alsisneixample we can con-
struct a path of infinite length due to circularly overlappaggregates, an infinite num-
ber of iterations is required to obtain an exact solutiorer€fore, in order to achieve
reasonably precise results, we iteratively calculatelheughput of all aggregates un-
til the differences between two consecutive arrival ratesllcaggregates at each link
drop below a predefined small value afA formal description is provided in Algo-
rithm 1 which may serve as an efficient and conceptually strafiernative to analytical
throughput calculation.

4 Capturing Network Dynamics

In this section, we extend the flow-level simulation to dyf@stenarios, in which link
and queue delay is modeled and the sending rates of aggsegatechange in each
iteration step independently of the link delay.

4.1 Definitions

In addition to the definitions from Section 3 we list the nimtas needed for the calcu-
lation of delay and queue size.

d- A Link propagation delay of link, d; € N.

q[n) Queue length at link initialized with¢;[0] = 0.

qr Maximum queue length at link

07 [n] Present delay of the data of aggregatariving at link!, initialized
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Algorithm 1 Throughput calculation for static traffic demands.

Ln<=0

2: initialize A\ [n] with O Va € AVl € L\ {firsta}
3: repeat

4. stop «<true

5 forall I € L do

6 calculate;[n] according to Equation (1)

7: calculatep; [n] according to Equation (2)

8 forall a € A; do

9 if sink(a) # [ then

10: calculatey,. ., (., [n + 1] according to Equation (3)
11: it (X enecany [+ 1] = Abepi(an [n]] > € then
12: stop < false

13: end if

14: end if

15: end for

16:  end for

17: n<n+1

18: until stop = true
19: forall a € A; do
20: 0 = )‘(.:znk(a) [n]

21: end for
with 0% irst(a) [0] = 0.
0%[n] End-to-end delay of the data of aggregatariving at its destination in

iteration intervah.
4.2 Modeling Link Propagation Delay

The propagation delafd; - A) is expressed by an integer multiple of the iteration
interval A. Due to this delay, the arrival rateg'[n] at link [ at iteration stem are
propagated to their respective next link only at iteratitaps + d;:

)\Zemt(a,l) [n + dl] = )\?[TL] : (1 — Dl [n]) (5)

In concrete implementations of our algorithm, the formiolabf this equation im-
plies that for each aggregateat every linkl, a number off; values must be stored for
future arrival at the respective next link. This can be viéwas dividing each link irl;
slots, and then shifting the data amo(ht[n] - A) one slot further on its route in each
iteration, as illustrated in Figure 2. This method can belemgnted quite efficiently
by using an array of fixed siz& for each aggregateat each link € L* and usingn
modulod;) as index operator, as e.g. done in [18].

Each iteration maps the arrival rat&&[n| for each linkl and aggregate to arrival
ratesAy. . [n + d;] for the successor linkext(a,l) of the respective aggregate in
the future. Thus, the traffic faces a delaydyfiteration intervals until then. We take
advantage of this fact for tracking the end-to-end delayusing the following data
structure. In addition to eackf*[n] we define &{[n] and add the following operation
to each iteration step to capture the delay up to this point.
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Fig. 2: Network with 4 nodes and a traffic aggregate that e@®S8slinks, each with a link delay
of d; = 3.

6Zemt(a,l) [n + dl] = 5la [n] +d. (6)
The end-to-end delay is then given by

o [TL] = 6;17;71]9((1) [TL] (7)

For now, this does not yield insightful results because atl-to-end delays are
constant. But we will use this data structure as a basis fepikg track of queueing
delay in the next section.

4.3 Modeling Queuing Delay

So far, we have considered networks without queues, me#mantyaffic exceeding the
link bandwidth, i.e\;[n] > ¢, is dropped. When using queues, the excess traffic that
fits in the queue is buffered and only the carryover is dropped

During one iteration interval,\; - A) new data arrives whiléc; - A) data can be
transmitted by link. As the queue size can be at mgt'”, the queue size for the next
iteration stegn + 1) can be calculated by:

qn+1] = min{qlm‘””, max {ql[n] —c - A+ N [n]- A, 0}} (8)

At most(q"** + ¢; - A — g[n]) can be buffered in the queue, while the exceeding
traffic is dropped. Therefore, we can calculate the lossatvidity by:

e A-aln)
Ai[n] - A ’ '

The flow-level simulation works so far by calculating thehatrate at a link based
on the current arrival rate at its predecessordoiteration steps in the future. While
the link delayd; is constant, a queue introduces additional delay which aanin each
iteration step. We therefore substitute Equation (5) withfollowing equations.

Within iteration stem, (\;[n] - A) data arrives which can be sent at the earliest in

i = {%Z]J iteration steps. Thus,is the minimum queuing delay for the traffic of all
c

pil] = max {1.- ©)
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Fig. 3: Array data structure for traffic aggregates with arieg delays.

aggregates arrived during intervalThe maximum queueing delay for the arriving data

corresponds t& = [%W We now calculate how the arriving data is distributed

between the delays frourto k.

In order to compute the amount of data which can be dequeugiteiration steps,
we need to consider that it is possible that there is alreatly stored for this iteration
step, which does not use the full link capacity. Therefore,oalculate the remaining
capacity for this iteration step ki + 1) - ¢; - A — ¢;[n]). This free capacity is shared
proportionally by all aggregates competing for the link.&\sonsequence, the amount
of data that will arrive at interveln + d; + ) at the nextlink A7, y[n+di+1]- A,
is increased. We flag® [n + d; + ¢] before the increase with a’, and after the
increase with a-++'.

next(a,l)

Nreat(ay [+ di +1]7 = X eppapln + di +1]7

{(i+ 1)-clA-A—Ql[n] . iéll[[Z]]’ Afn] - (1 —pl[n])}

(10)
The arrival rates\” , , [n + di + j] with queueing delay, i < j < k, make

proportional use of the full link capacity.

+ min

At ln]
Ai[n]’

Anezt(a l)[n + dl +.7] =C - VJ, 1< ] < k. (11)

If k> i, the arrival rate\},  , , ,,[n + di + k] with queueing delay corresponds to

the proportional fraction of the latest buffered data indbeue(¢;[n+1]—(k—1)-¢;- A).
aln+1]—(k=1)-c-A Mn]

We observe that in the case of queues we calculate the aateslfor several future
iteration steps at once i > i, which is illustrated in Figure 3. The data structure for

)\?zezt(a,l) [n + dl + k] = (12)
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A¢[n] in a concrete implementation can essentially stay as in tjugb) with the

exception that the size of the respective modulo array musthed; + Pf:j
To keep track of the end-to-end delay of aggregates we ussathe data structure
as in Equation (6) but add the additional queuing delay.jReith i < j < k we can

simply write

(SZezt(a,l)[n—i_dl +.7] = 6?[”] +dl +.77 VJ, i< ] < k. (13)

However, for the minimum delay it is possible that there is already data stored for
arrival at intervaln + d; + i). Therefore, we have to calculate the weighted average of
the delay of the data rate that was stored eafhgr, , ,[n + d; + i) and the delay
of the data arrived in the last intervally_ , , [n+di + it -l aplntdi+i7).
Again, we flagd before modifying with a-’ and after modifying with a++'.

a
next(a,l)

)\?Lezt(a,l) [n +di + Z]+
)\?zezt(a,l) [n +di + 2]7
)\Zezt(a,l) [n +di + Z]+

)\Zez a [n =+ dl + 7/]7
Oneat(anln +di+ it = Opext(an[n+di+i]” - < t(a,l)

(14)

+ (0 [n] +di +74) - (1 —

5 Analysis of Simulation Accuracy

In this section we demonstrate the application of the pregdbow-level simulation
model using a small example network in order to provide ttaelee with an insight
about the character of results which may be expected.

The network in Figure 4a consists of six nodes and threedradfjregates. The traf-
fic is Poisson meaning that the packet interarrival times are exponigntiastributed.
In addition, in order to generate a dynamic network-wid#itranatrix, the mean rate
of each traffic source varies in an oscillatory manner wiffedent frequencies.

-
>
Qo
+ + S N
a e 515001 —— Flow-level simulation
o - — — Packet-level simulation
£ 1200
=
2 900
T 600
O—C—® = :
— £ 300
- ]
- L ®)
100 200 300 400 500
Time (ms)
a. Example network. b. Cumulative throughput.

Fig. 4: Simple example network with cumulative throughprtthe aggregate from 0 to 5.
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a. Packet simulation. b. Flow-level simulation withA of 1 ms.
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c. Flow-level simulation withA of 5 ms. d. Flow-level simulation withA of 10 ms.

Fig. 5: Queue sizes for packet-level simulation and flovelesimulation with different iteration
intervals.

The presented simulation setting results in temporaryloadrat both the link from
3 to 4 and from 4 to 5, allowing us to observe the throughputggfregates which
experience queueing and loss at more than one link. We peefbthe packet-level
simulations in thens-2network simulator [19] and the the flow-level simulation®ur
own simulator.

We concentrate on the aggregate from 0 to 5. In Figure 4b timeiative throughput
(the total amount of data arrived until iteration interwdlis shown for this aggregate
for both packet-level simulation and flow-level simulatigmith A of 1 ms), demon-
strating that the flow-level simulation results closelyerable those from packet-level
simulation.

Next we demonstrate the effects of varying the iteratioerivel A in flow-level
simulation. In Figure 5 the size of the queue at the link framde4 to 5 is shown, using
the same traffic scenario as before. For comparison, in €i§arthe queue size over
time is shown for packet-level simulation. For flow-levehsilation withA = 1 ms the
queue size over time is very similar (Figure 5b). Increasintp 5 ms (Figure 5c¢) and
10 ms (Figure 5d), we observe that the short-time variatdisappear, but the basic
pattern persists. The computational complexity of the flevel simulation is inversely
proprotional to the iteration interval, meaning that siatigdn with aA of 10 ms is 10
times as fast as simulation withzaof 1 ms.

In Figure 6 the total (i.e. end-to-end) packet delay is shfowthe aggregate from
0 to 5 for packet simulation and flow-level simulation. In ketlevel simulation, the
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c. End-to-end delay in flow-level simula- d. End-to-end delay in flow-level simula-
tion with A of 5 ms. tion with A of 10 ms.

Fig. 6: End-to-end delay statistics for the aggregate fram®

end-to-end delay was determined by calculating the avetatzy for all packets that
arrived at their destination within an interval of 1 ms. Infliievel simulation we apply
Equations (13) and (14). We observe that the calculated@®thd delays for packet
and flow-level simulation are quite similar when using\af 1 ms, with the exception
that the short-time variations are higher in packet-leiralgation (Figures 6a—6b). In
Figures 6¢c—6d we notice that these variations disappeapledaty, but the simulation
still captures the basic end-to-end delay characterigtids well.

6 Conclusion

In this paper we have provided a comprehensive formulafidiscrete-time flow-level
simulation at different levels of detail. We have first irtuzed a basic algorithm capa-
ble of calculating the loss probabilities and throughptesaf end-to-end traffic aggre-
gates in a setting with static traffic demands, and have dstraied this algorithm to
be a conceptually very simple and efficient alternative tmpglex analytical throughput
calculation.

We have then extended the algorithm to handle time-depédravior of net-
works by introducing link and queueing delay and a technfqueneasurement of end-
to-end delay. We have compared results from flow-level st examples to results
from packet-level simulation, and have shown that the tleyary similar, especially
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if a sufficiently small iteration interval\ is chosen for flow-level simulation. A smaller
interval leads to more accurate results while a largervatespeeds up the simulation.
However, we have demonstrated that even for larger intethial basic network behav-
ior is captured. Future work may include the analysis ofiséallSP networks, both in
terms of network size and traffic patterns observed in tadayernet.
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