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Abstract. In this paper, we present a comprehensive algorithmic framework for
discrete-time flow-level simulation of data networks. We first provide a simple al-
gorithm based upon iterative equations useful for the simulation of networks with
static traffic demands, and we show how to determine packet loss and throughput
rates using a simple example network. We then extend these basic equations to
a simulation method capable of handling queue and link delays in dynamic traf-
fic scenarios and compare results from flow-level simulationto those obtained
by packet-level simulation. Finally, we illustrate the tradeoff between computa-
tional complexity and simulation accuracy which is controlled by the duration of
a single iteration interval∆.

1 Introduction
Simulation has traditionally been an important tool for performance evaluation of data
networks, mostly in the form of packet-level simulation by employing discrete-event
simulation techniques [1]. Every packet arrival and departure at each link is modeled
as a separate event. Although packet-level simulation still represents the most widely
used approach, the simulation of today’s networks with veryhigh packet rates is often
not feasible, as too many simulation events must be generated even for small intervals
of simulated time.

However, in many cases the overhead of packet-level simulations is not necessary at
all in order to achieve a realistic estimation of network statistics like throughput rates,
queue sizes, or loss probabilities. In those cases, an efficient alternative to packet-level
simulation is the simulation of networks at the level of individual flows, for which there
exists a multitude of different techniques, commonly summarized under the termsfluid
simulationor flow-level simulation.

In this paper, we concentrate upondiscrete-time flow-level simulation. Traffic is not
modeled in terms of discrete packets but rather in terms of a continuous amount of
data. The data is shifted in fixed intervals∆ on predefined routes through the network.
However, to our best knowledge, literature in this field of research lacks a discrete,
easy-to-implement formulation of discrete-time flow-level simulation which is able to
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model end-to-end connections. Addressing this issue, in this paper, we provide such a
formulation, which additionally allows the network to be simulated at different levels
of detail. We develop the fundamental flow-level simulationtechniques step by step,
first presenting a simple algorithm for throughput calculation, and then extending this
algorithm to capture network dynamics like link and queueing delay.

The paper is structured as follows: Section 2 gives an overview of related work. In
Section 3 we describe the basic equations for calculating the time-dependent aggregate
throughput rates and the loss probabilities on the links, and we present a method for
the calculation of the stationary network state in the presence of static traffic demands.
Subsequently, in Section 4 we extend these basic equations to scenarios with dynamic
traffic patterns by introducing queue and link delay modeling. Section 5 provides a
comparison of flow-level and packet-level simulation results and demonstrates the in-
fluence of different durations of iteration interval∆. Finally, Section 6 concludes the
paper with summarizing remarks.

2 Related Work

This section provides a brief description of previous work and relevant applications of
flow-level simulation. There are two main variants of flow-level simulation. The foun-
dation for thecontinuous-timevariant was given in [2] and [3], and has since been
further developed and widely applied by other authors [4–7]. The basic principle of
this approach is to model flow rates and rate changes without considering discrete data
packets. Each flow is assigned a certain transmission rate, and rate reductions due to
bottleneck links are tracked as events in the event chain of the simulator. Although
widely used, under particular circumstances this approachhas been shown to suffer
from the so calledripple effectwhich can cause severe performance degradations con-
cerning computation time. It occurs in networks with circularly overlapping end-to-end
connections and overloaded links, causing rate change events to reproduce themselves
in a circular manner [8, 9].

An alternative to the continuous-time variant istime-stepped fluid simulationwhich
is the foundation of the simulation method presented in thispaper. Here, the data is
modeled in terms of quantities of a continuous amount of datawhich are shifted through
the network at a fixed time step. This model was first proposed in [10], but the routing
model applied therein is hardly applicable to realistic networks. In particular, a traffic
demand matrix cannot be represented, as end-to-end connections have not been mod-
eled at all.

Another approach which defines the evolution of network datastreams in terms of
differential equations is used in [11]. End-to-end connections are modeled as traffic ag-
gregates which enable the simulation of realistic network and routing scenarios. The
equations are numerically solved using the Runge-Kutta algorithm. In this paper, we
use the basic idea from [10], and additionally enable end-to-end connections like in
[11]. Furthermore, we provide a clean formulation of discrete-time flow-level simula-
tion which is well suited for practical implementation.

The possibility of dynamic traffic rate adjustments and delay modeling in the pre-
sented simulation approach allows for multipath routing simulations in which traffic
aggregates between individual pairs of nodes are carried via multiple parallel paths.
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Implementing the simulation approach described in this paper, we have already evalu-
ated the Adaptive Multi-Path algorithm (AMP) [12, 13] usingour flow-level simulation
environment (cf. [14, 15]).

Furthermore, the throughput and delay approximation capabilities of this approach
enable more complex elastic traffic models, like e.g. TCP, tobe integrated into such
a flow-level simulation framework, as the sending rate of individual sources can be
dynamically adjusted based upon the information about flow round-trip time (RTT)
and loss probability on the path, employing differential equation models of TCP as
presented in [11, 16, 17].

3 Basic Iterative Algorithm

In this section we first clarify the notation, after which we introduce the iterative al-
gorithm that calculates throughput rates and loss probabilities. Finally, we show the
application of this algorithm for the calculation of stationary throughput in a network
with static traffic demands.

3.1 Definitions

The simulation process is based upon shifting data through the network in fixed time
intervals∆. In our model, a data rateλ denotes the total amount of data in a single
iteration interval, normalized by∆ as the time between two successive iteration steps.
In other words, a data rate ofλ in interval∆ corresponds to an amount of data,λ · ∆,
which may represent e.g. bits, bytes, or equally sized packets.

In the following we list some definitions for reference. Expressions indexed by[n]
are time-dependent and calculated in each iteration.

L Set of all links.
A Set of all aggregates.
La ⊆ L Set of links crossed by aggregatea ∈ A.
Al ⊆ A Set of aggregates crossing linkl ∈ L.
first(a) ∈ La First link on the route of aggregatea ∈ A.
next(a, l) ∈ La Successor link ofl ∈ La on the route of aggregatea ∈ Al.
sink(a) ∈ La Virtual link representing the sink of aggregatea ∈ A and

succeeding the last link ofa.
cl Link capacity of linkl ∈ L, i.e. data that can be served during a

single iteration interval∆.
pl[n] Loss probability at linkl ∈ L.
λa

l [n] Arrival rate of aggregatea ∈ A at link l ∈ La.
λa[n] Sending rate of aggregatea ∈ A, equal toλa

first(a)[n].
λl[n] Sum of all arrival rates at linkl ∈ L.
θa[n] Throughput of aggregatea ∈ A.
∆ Iteration duration interval, i.e. the time between two iteration steps.

c©Springer,20th International Teletraffic Congress (ITC), Ottawa, Canada,June 2007 – page 3



3.2 Iterative Equations for Discrete-Time Flow-Level Simulation

We assume the network to be empty at initialization time (n = 0). Each traffic aggregate
a ∈ A has a specific route consisting of a sequence of linksl ∈ La along which the
arrival ratesλa

l [n] of this aggregate are shifted in each iteration step. The overall arrival
rate at linkl in iteration stepn is then:

λl[n] =
∑

a∈Al

λa
l [n]. (1)

Based on this sum and the capacitycl of this link, its loss probabilitypl[n] can be
calculated for the corresponding iteration stepn. The capacitycl of a link l is assumed
to be proportionally partitioned among the competing aggregatesa ∈ Al.

pl[n] = max

{

1 −
cl

λl[n]
, 0

}

. (2)

The arrival rateλa
l [n] of aggregatea and the loss probability at linkl in iteration

stepn determine the arrival rateλa
next(a,l)[n+1] of a at its next link at the next iteration

stepn + 1.

λa
next(a,l)[n + 1] = λa

l [n] ·
(

1 − pl[n]
)

. (3)

The throughput of aggregatea is given by

θa[n] = λa
sink(a)[n]. (4)

3.3 Calculation of Stationary Throughput for Static Traffic Demands

We now use the equations from the previous section to calculate the stationary through-
put rates in settings with static traffic demands. By first calculating the throughput rates
of a small example network analytically, we show that this can be a non-trivial task and
propose an algorithm based upon the iterative equations as asimple alternative.

Figure 1a shows a triangle network with all link capacities set to c = 1 and three
overlapping aggregates with static, non-adaptive sendingratesλ = 1, as well. Intuition
might lead to the belief that each aggregate should achieve athroughput ofθ = 0.5,
as this corresponds to the most reasonable bandwidth distribution with respect to both
fairness and throughput. However, the analytical calculation of the throughput yields
significantly different results. Due to the symmetrical nature of the example, we assume
that the loss probabilityp is the same on all links. The throughput, which equals the
arrival rate at the second link of each aggregate, can then beexpressed byθ = λ · (1 −

p)2. The arrival rate of each aggregate at its respective first link equalsλ · (1 − p). As
each link is crossed by two aggregates, i.e. one at its initial hop and the other at its
second hop, the following equation must be solved:c = λ(1 − p) + λ(1 − p)2. With
λ = 1 andc = 1, and presuming that the loss probability is greater than 0, we can
calculate the throughput resulting inθ ≈ 0.38.

While in this simple example we are able to calculate the throughput quite easily,
by solving just one quadratic equation, we would have to solve much more complex
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Fig. 1: Throughput calculation for an triangle network.

sets of nonlinear equations in the case of larger networks. When instead applying the
proposed iterative equations from the last section to the example network, we observe
in Figure 1b that the stationary throughput of all aggregates converges at the same point
as the analytical solution, i.e. at the value of about 0.38, after only a few iterations of
the algorithm.

The exact solution for throughput rates in arbitrary networks is achieved after a
number of iterations which corresponds to the hop count of the longest possible path
composable of overlapping aggregates in the network. As in this example we can con-
struct a path of infinite length due to circularly overlapping aggregates, an infinite num-
ber of iterations is required to obtain an exact solution. Therefore, in order to achieve
reasonably precise results, we iteratively calculate the throughput of all aggregates un-
til the differences between two consecutive arrival rates of all aggregates at each link
drop below a predefined small value ofε. A formal description is provided in Algo-
rithm 1 which may serve as an efficient and conceptually simple alternative to analytical
throughput calculation.

4 Capturing Network Dynamics
In this section, we extend the flow-level simulation to dynamic scenarios, in which link
and queue delay is modeled and the sending rates of aggregates can change in each
iteration step independently of the link delay.

4.1 Definitions

In addition to the definitions from Section 3 we list the notations needed for the calcu-
lation of delay and queue size.

dl · ∆ Link propagation delay of linkl, dl ∈ N.
ql[n] Queue length at linkl, initialized withql[0] = 0.
qmax
l Maximum queue length at linkl.

δa
l [n] Present delay of the data of aggregatea arriving at linkl, initialized
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Algorithm 1 Throughput calculation for static traffic demands.
1: n ⇐ 0
2: initialize λa

l [n] with 0 ∀a ∈ A,∀l ∈ La \ {firsta}
3: repeat
4: stop ⇐ true
5: for all l ∈ L do
6: calculateλl[n] according to Equation (1)
7: calculatepl[n] according to Equation (2)
8: for all a ∈ Al do
9: if sink(a) 6= l then

10: calculateλa
next(a,l)[n + 1] according to Equation (3)

11: if
˛

˛λa
next(a,l)[n + 1] − λa

next(a,l)[n]
˛

˛ > ε then
12: stop ⇐ false
13: end if
14: end if
15: end for
16: end for
17: n ⇐ n + 1
18: until stop = true

19: for all a ∈ Al do
20: θa ⇐ λa

sink(a)[n]
21: end for

with δa
first(a)[0] = 0.

δa[n] End-to-end delay of the data of aggregatea arriving at its destination in
iteration intervaln.

4.2 Modeling Link Propagation Delay

The propagation delay(dl · ∆) is expressed by an integer multipledl of the iteration
interval ∆. Due to this delay, the arrival ratesλa

l [n] at link l at iteration stepn are
propagated to their respective next link only at iteration stepn + dl:

λa
next(a,l)[n + dl] = λa

l [n] ·
(

1 − pl[n]
)

. (5)

In concrete implementations of our algorithm, the formulation of this equation im-
plies that for each aggregatea, at every linkl, a number ofdl values must be stored for
future arrival at the respective next link. This can be viewed as dividing each link indl

slots, and then shifting the data amount(λa
l [n] · ∆) one slot further on its route in each

iteration, as illustrated in Figure 2. This method can be implemented quite efficiently
by using an array of fixed sizedl for each aggregatea at each linkl ∈ La and using(n
modulodl) as index operator, as e.g. done in [18].

Each iteration maps the arrival ratesλa
l [n] for each linkl and aggregatea to arrival

ratesλa
next(a,l)[n + dl] for the successor linknext(a, l) of the respective aggregate in

the future. Thus, the traffic faces a delay ofdl iteration intervals until then. We take
advantage of this fact for tracking the end-to-end delay, byusing the following data
structure. In addition to eachλa

l [n] we define aδa
l [n] and add the following operation

to each iteration step to capture the delay up to this point.
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Fig. 2: Network with 4 nodes and a traffic aggregate that crosses 3 links, each with a link delay
of dl = 3.

δa
next(a,l)[n + dl] = δa

l [n] + dl. (6)

The end-to-end delay is then given by

δa[n] = δa
sink(a)[n]. (7)

For now, this does not yield insightful results because all end-to-end delays are
constant. But we will use this data structure as a basis for keeping track of queueing
delay in the next section.

4.3 Modeling Queuing Delay

So far, we have considered networks without queues, meaningthat traffic exceeding the
link bandwidth, i.e.λl[n] > cl, is dropped. When using queues, the excess traffic that
fits in the queue is buffered and only the carryover is dropped.

During one iteration interval,(λl · ∆) new data arrives while(cl · ∆) data can be
transmitted by linkl. As the queue size can be at mostqmax

l , the queue size for the next
iteration step(n + 1) can be calculated by:

ql [n + 1] = min
{

qmax
l , max

{

ql[n] − cl · ∆ + λl [n] · ∆, 0
}}

. (8)

At most(qmax
l + cl · ∆ − ql[n]) can be buffered in the queue, while the exceeding

traffic is dropped. Therefore, we can calculate the loss probability by:

pl[n] = max

{

1 −
qmax
l + cl · ∆ − ql[n]

λl[n] · ∆
, 0

}

. (9)

The flow-level simulation works so far by calculating the arrival rate at a linkl based
on the current arrival rate at its predecessor fordl iteration steps in the future. While
the link delaydl is constant, a queue introduces additional delay which can vary in each
iteration step. We therefore substitute Equation (5) with the following equations.

Within iteration stepn, (λl[n] · ∆) data arrives which can be sent at the earliest in

i =
⌊

ql[n]
cl·∆

⌋

iteration steps. Thus,i is the minimum queuing delay for the traffic of all
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aggregates arrived during intervaln. The maximum queueing delay for the arriving data

corresponds tok =
⌈

ql[n+1]
cl·∆

⌉

. We now calculate how the arriving data is distributed

between the delays fromi to k.
In order to compute the amount of data which can be dequeued ini iteration steps,

we need to consider that it is possible that there is already data stored for this iteration
step, which does not use the full link capacity. Therefore, we calculate the remaining
capacity for this iteration step by((i + 1) · cl · ∆ − ql[n]). This free capacity is shared
proportionally by all aggregates competing for the link. Asa consequence, the amount
of data that will arrive at interval(n + dl + i) at the next link,λa

next(a,l)[n + dl + i] ·∆,
is increased. We flagλa

next(a,l)[n + dl + i] before the increase with a ’−’, and after the
increase with a ’+’.

λa
next(a,l)[n + dl + i]+ = λa

next(a,l)[n + dl + i]−

+ min

{

(i + 1) · cl · ∆ − ql[n]

∆
·
λa

l [n]

λl[n]
, λa

l [n] · (1 − pl[n])

}

.

(10)
The arrival ratesλa

next(a,l)[n + dl + j] with queueing delayj, i < j < k, make
proportional use of the full link capacitycl.

λa
next(a,l)[n + dl + j] = cl ·

λa
l [n]

λl[n]
, ∀j, i < j < k. (11)

If k > i, the arrival rateλa
next(a,l)[n+dl +k] with queueing delayk corresponds to

the proportional fraction of the latest buffered data in thequeue(ql[n+1]−(k−1)·cl·∆).

λa
next(a,l)[n + dl + k] =

ql[n + 1] − (k − 1) · cl · ∆

∆
·
λa

l [n]

λl[n]
. (12)

We observe that in the case of queues we calculate the arrivalrates for several future
iteration steps at once ifk > i, which is illustrated in Figure 3. The data structure for
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λa
l [n] in a concrete implementation can essentially stay as in Equation (5) with the

exception that the size of the respective modulo array must now bedl +
⌈

qmax
l

cl

⌉

.

To keep track of the end-to-end delay of aggregates we use thesame data structure
as in Equation (6) but add the additional queuing delay. Forj with i < j ≤ k we can
simply write

δa
next(a,l)[n + dl + j] = δa

l [n] + dl + j, ∀j, i < j ≤ k. (13)

However, for the minimum delayi, it is possible that there is already data stored for
arrival at interval(n + dl + i). Therefore, we have to calculate the weighted average of
the delay of the data rate that was stored earlier(λa

next(a,l)[n + dl + i]−) and the delay
of the data arrived in the last interval (λa

next(a,l)[n+dl + i]+ −λa
next(a,l)[n+dl + i]−).

Again, we flagδa
next(a,l) before modifying with a ’−’ and after modifying with a ’+’.

δa
next(a,l)[n + dl + i]+ = δa

next(a,l)[n + dl + i]− ·

(

λa
next(a,l)[n + dl + i]−

λa
next(a,l)[n + dl + i]+

)

+ (δa
l [n] + dl + i) ·

(

1 −
λa

next(a,l)[n + dl + i]−

λa
next(a,l)[n + dl + i]+

)

.

(14)

5 Analysis of Simulation Accuracy

In this section we demonstrate the application of the proposed flow-level simulation
model using a small example network in order to provide the reader with an insight
about the character of results which may be expected.

The network in Figure 4a consists of six nodes and three traffic aggregates. The traf-
fic is Poisson, meaning that the packet interarrival times are exponentially distributed.
In addition, in order to generate a dynamic network-wide traffic matrix, the mean rate
of each traffic source varies in an oscillatory manner with different frequencies.
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Fig. 4: Simple example network with cumulative throughput for the aggregate from 0 to 5.
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Fig. 5: Queue sizes for packet-level simulation and flow-level simulation with different iteration
intervals.

The presented simulation setting results in temporary overload at both the link from
3 to 4 and from 4 to 5, allowing us to observe the throughput of aggregates which
experience queueing and loss at more than one link. We performed the packet-level
simulations in thens-2network simulator [19] and the the flow-level simulations inour
own simulator.

We concentrate on the aggregate from 0 to 5. In Figure 4b the cumulative throughput
(the total amount of data arrived until iteration intervaln) is shown for this aggregate
for both packet-level simulation and flow-level simulation(with ∆ of 1 ms), demon-
strating that the flow-level simulation results closely resemble those from packet-level
simulation.

Next we demonstrate the effects of varying the iteration interval ∆ in flow-level
simulation. In Figure 5 the size of the queue at the link from node 4 to 5 is shown, using
the same traffic scenario as before. For comparison, in Figure 5a the queue size over
time is shown for packet-level simulation. For flow-level simulation with∆ = 1 ms the
queue size over time is very similar (Figure 5b). Increasing∆ to 5 ms (Figure 5c) and
10 ms (Figure 5d), we observe that the short-time variationsdisappear, but the basic
pattern persists. The computational complexity of the flow-level simulation is inversely
proprotional to the iteration interval, meaning that simulation with a∆ of 10 ms is 10
times as fast as simulation with a∆ of 1 ms.

In Figure 6 the total (i.e. end-to-end) packet delay is shownfor the aggregate from
0 to 5 for packet simulation and flow-level simulation. In packet-level simulation, the
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Fig. 6: End-to-end delay statistics for the aggregate from 0to 5.

end-to-end delay was determined by calculating the averagedelay for all packets that
arrived at their destination within an interval of 1 ms. In flow-level simulation we apply
Equations (13) and (14). We observe that the calculated end-to-end delays for packet
and flow-level simulation are quite similar when using a∆ of 1 ms, with the exception
that the short-time variations are higher in packet-level simulation (Figures 6a–6b). In
Figures 6c–6d we notice that these variations disappear completely, but the simulation
still captures the basic end-to-end delay characteristicsquite well.

6 Conclusion

In this paper we have provided a comprehensive formulation of discrete-time flow-level
simulation at different levels of detail. We have first introduced a basic algorithm capa-
ble of calculating the loss probabilities and throughput rates of end-to-end traffic aggre-
gates in a setting with static traffic demands, and have demonstrated this algorithm to
be a conceptually very simple and efficient alternative to complex analytical throughput
calculation.

We have then extended the algorithm to handle time-dependent behavior of net-
works by introducing link and queueing delay and a techniquefor measurement of end-
to-end delay. We have compared results from flow-level simulation examples to results
from packet-level simulation, and have shown that the they are very similar, especially
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if a sufficiently small iteration interval∆ is chosen for flow-level simulation. A smaller
interval leads to more accurate results while a larger interval speeds up the simulation.
However, we have demonstrated that even for larger intervals the basic network behav-
ior is captured. Future work may include the analysis of realistic ISP networks, both in
terms of network size and traffic patterns observed in today’s Internet.
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