
c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Wildcard Compression of Inter-Domain Routing
Tables for OpenFlow-Based Software-Defined

Networking
Wolfgang Braun and Michael Menth

University of Tübingen, Department of Computer Science, Germany
Email: {wolfgang.braun,menth}@uni-tuebingen.de

Abstract—In this paper we consider carrier networks using
only OpenFlow switches instead of IP routers. Accommodating
the full forwarding information base (FIB) of IP routers in the
switches is difficult because the BGP routing tables in the default-
free zone currently contain about 500,000 entries and switches
have only little capacity in their fast and expensive TCAM
memory.

The objective of this paper is the compression of the FIB in
acceptable time to minimize the TCAM requirements of switches.
The benchmark is simple prefix aggregation as it is common
in IP networks where longest-prefix matching is applied. In
contrast, OpenFlow-based switches can match general wildcard
expressions with priorities. Starting from a minimum-size prefix-
based FIB, we further compress that FIB by allowing general
wildcard expressions utilizing the Espresso heuristic that is
commonly used for logic minimization. As the computation time
of Espresso is challenging for large inputs, we provide means
to trade computation time against compression efficiency. Our
results show that today’s FIB sizes can be reduced by 17% saving
up to 40,000 entries and the compression time can be limited to
1 – 2 s sacrificing only 1% – 2% compression ratio.

Index Terms—Software-Defined Networking, OpenFlow, Com-
pression, Routing Tables, TCAM

I. INTRODUCTION

Software-defined networking (SDN) and OpenFlow [1] have
gained a lot of attention in the last years due to their flexibility,
programmability, and ease to introduce new features and
services into the network. OpenFlow was mostly deployed in
enterprise, campus, and data center networks. More recently,
the interest in SDN for carrier networks has greatly increased.
Several researchers have analyzed the applicability of that
idea [2] and various proposals have been suggested. They are
appealing for cost and operational reasons.

An important task in carrier networks is inter-domain rout-
ing which is performed by the Border Gateway Protocol
(BGP). Current BGP routing tables hold more than 500,000
entries [3]. That information needs to be installed in OpenFlow
switches if misses for flow tables entries should be avoided.
However, forwarding tables in OpenFlow switches are usu-
ally smaller than those of core routers so that installing all
necessary forwarding information is a challenge.

This work has been supported by the German Federal Ministry of Education
and Research (BMBF) under support code 16BP12307 (EUREKA-Project
SASER). The authors alone are responsible for the content of the paper.

A reason for the small forwarding tables in OpenFlow
switches is that they are implemented in Ternary Content
Addressable Memory (TCAM). TCAM allows packet match-
ing in constant time and outperforms software-based packet
matching. However, TCAM has high power consumption and
large footprint, suffers from heat generation [4], and TCAM
is expensive compared to other memory such as SRAM
[5]. Therefore, vendors tend to install small TCAMs into
OpenFlow switches, e.g., many OpenFlow switches can handle
in practice between 10K and 40K flow entries.

While conventional routers use only prefix-based match
fields with longest prefix match (LPM) in their forwarding
tables, OpenFlow switches support general wildcard-capable
match fields with priorities. Since general wildcard expressions
with priorities are more flexible than prefix-based expressions
with LPM, compression techniques could reduce the number
flow table entries for OpenFlow switches so that they can be
better accommodated in the limited TCAM.

In this paper, we propose to use the Espresso heuristic [6]
from logic minimization to compress a minimum-size set of
prefix-based match fields generated by the ORTC algorithm
[7] into a set of match fields with general wildcards. As the
runtime of the Espresso scales exponentially with the input
size, we suggest methods to keep the time for the compression
of routing tables low. We apply this method to BGP routing
tables of 2013 to quantify the compression potential for flow
tables entries in carrier networks. We further analyze the
structure of the compressed outcome and the tradeoff between
runtime of the compression algorithm and its compression rate.

The remainder of this paper is structured as follows. In
Section II we discuss a concept for OpenFlow-based SDN in
carrier networks that sets the scene for our study. In Section III
we review related work with regard to compression of table
entries used in network devices. We explain our compression
method including speedup options in Section IV. In Section V
we apply the algorithms to BGP routing information, and
analyze the compression potential and computation efforts.
Section VI concludes this paper.

II. OPENFLOW-BASED SDN FOR CARRIER NETWORKS

Carrier networks require inter-domain routing information.
Usually, one or several BGP routers serve as BGP speakers and
collect such information via BGP from neighboring domains.

c©Third European Workshop on Software Defined Networks (EWSDN), 2014, Budapest, Hungary, September 2014

OpenFlow control channel

OpenFlow
Controller(s)

BGP control messages

AS

AS

AS

AS

RIB

BGP process

FIB

Compressed FIB

Wildcard
compression

Flow table entries

BGP messages

Inter-Domain Routing
 Application

Fig. 1: Inter-domain routing with OpenFlow-based SDN: a
commodity server acts as a BGP speaker and collects the
Border Gateway Protocol (BGP) runs in the control plane on
commodity servers as SDN application or controller module.

To handle large routing tables and frequent BGP updates, such
routers require additional CPU and memory resources as well
as additional space in their forwarding table which increases
their cost.

In addition, state distribution within a single carrier network
can cause scalability and stability issues and, thus, the authors
of [8] proposed a centralized BGP control plane called Routing
Control Platforms (RCP) in 2005. This idea was recently re-
considered for OpenFlow-based SDN in [9] and [10]. Figure 1
illustrates that idea. Expensive routers are removed from the
network and replaced by simpler and less expensive OpenFlow
switches. The switches forward BGP control messages such
as prefix announcements and withdrawals to the OpenFlow
controller. The controller passes them to the BGP application.
This application interacts with BGP speakers of neighboring
domains and performs the BGP decision process. That means,
it combines the inter-domain routing information from BGP
and intra-domain routing information into a forwarding table
for each switch in the network such that each prefix is
associated with an appropriate next-hop. That information is
generally compressed using prefix aggregation before being
configured by the controller in the switches.

It is likely that the forwarding information cannot be com-
pletely included in a switch. Therefore, the authors of [11]
take advantage of the fact that approximately 80% of the
Internet traffic is caused by 20% of the IP prefixes so that the
frequently used prefixes can always be installed in TCAM.
Less frequently used prefixes are kept in the control plane but
are not installed in the switch. If the switch receives a data
packet for which it has no matching prefix, it forwards the
packet to the controller that knows how to handle that packet.
This approach generally degrades network performance.

The approach presented above may be improved through

compression of forwarding tables by combining appropriate
forwarding rules through general wildcards in match fields
that are supported by OpenFlow switches. In an SDN context
this is easily feasibly as the control plane consists of cheap
commodity hardware so that sufficient CPU power is available
for computation-intensive wildcard compression. As a result,
more entries fit into the limited TCAM and less traffic needs
to be forwarded via the controller.

In [12], a software-defined Internet exchange point (SDX)
is presented as well as a method to reduce the BGP state using
virtual next-hops and addresses. Our method is orthogonal to
this approach.

Routing table updates must be propagated fast so that there
may not be enough time for the compression of the entire FIB
after the routing change. The authors of [13] showed that the
majority of the routing table entries are quite stable. Routing
table updates are still frequent so that a compression method
should be able to perform updates quickly which may happen
incrementally on the existing compressed table. This also holds
for the SDN context.

III. RELATED WORK

One of the most important routing table compression
method was developed in 1999. It is called Optimal Routing
Table Constructor (ORTC) [7] and calculates minimum-size
routing tables but does not support incremental routing table
updates. The authors of [14] achieve fast incremental updates
of compressed routing tables but only sub-optimal compres-
sion. Incremental updates are also considered in [15] and [16];
the latter is directly based on ORTC.

A different approach is the compression of the data structure
that represents the routing table. In [17], entropy bound
compression is investigated to significantly reduce the size of
the routing table through shared data structures.

Compression of ACLs or firewall rules is similar to routing
table compression. Entries of Access Control Lists (ACLs)
may match more than a single field; they typically support
source and destination address, port number, type, etc. In [18],
a compression method based on decision trees and hyper-
cuts is presented. The TCAM Razor [19] is able to minimize
lists of ACLs into smaller lists. The authors also proposed a
more efficient compressor, called firewall compressor [20], that
outperforms the TCAM razor. These methods do not consider
the use of general wildcard expressions.

Wildcard-based compression for ACLs is considered in [21].
It uses a heuristic that runs in polynomial time which is based
on two functions: bit swapping and bit merging. However, this
method is less efficient than other ACL compressors. Wildcard
compression of ACLs using logic minimization is considered
in [22]. It achieves a significant compression ratio for both
artificial and real firewall rules but it is rather time-consuming.
Compression of ACLs differs from compression of FIB entries.
ACL rules are more complex than FIB entries, but then number
of entries in a FIB in carrier networks exceeds the number of
entries in ACLs by far: typical ACLs contain a few thousand
entries while current BGP RIBs contain more than 500,000

0 1

1 0 1

1

2

3 3

1

1

Fig. 2: The prefix tree for the routing table in Table Ia.

entries. In addition, compression of FIBs has stricter runtime
constraints because FIB updates must be processed faster than
ACL updates.

Routing tables of virtual routers are commonly stored in
the hypervisor. Running multiple virtual routers on a single
physical router increases its TCAM requirement. To limit that
requirement, the authors of [5] compress multiple virtual FIBs
using merged prefix trees. Up to 14 virtual FIBs can be stored
in one TCAM and incremental routing updates are possible.

IV. METHODOLOGY

In this section we briefly describe the ORTC algorithm that
provides the input and benchmark for our proposal. Then,
we discuss longest-prefix matching (LPM) that is used in IP
networks and wildcard matching using priorities. We present
how prefixes can be compressed using the Espresso logic
minimization heuristic. Finally, we discuss how Espresso can
be incrementally applied and how routing table updates can
be performed.

A. Prefixes, Forwarding Tables, and Longest-Prefix Match

An IPv4 prefix p consists of a 32-bit IP address and a 32-bit
network mask. The network mask starts with a series of ones
in the most significant bits followed by a series of zeroes for
the least significant bits. The number of leading ones is the
length length(p) of the prefix p which is usually indicated by
the notation /length(p). As an alternative, a prefix can also be
represented by a match field containing the length(p) bits of
the IP address followed by wildcard symbols ‘*’, also known
as ‘don’t cares’, for each remaining position in the address.
Table Ia contains prefixes in that notation. A prefix matches
an address if the leading length(p) bits of the prefix address
equal the first length(p) bits of the address to be matched.

A routing or forwarding table associates a set of prefixes
with a next-hop. It can be represented by a prefix tree. Figure 2
illustrates the prefix tree for the routing table in Table Ia. Each
entry in the routing table is represented by a labeled node in
the tree whereby the label indicates the next-hop. The prefix
for such an entry is composed of the numbers on the edges
from the root to the corresponding node. The root of the tree
corresponds to the least specific prefix ∗∗∗. If a node is empty,
the corresponding routing tables has no entry associated with
that prefix.

Forwarding in IP networks uses longest prefix matching
(LPM). If multiple entries in a forwarding table match an

FIB entry Next-hop
*** 1
101 1
1** 2
01* 3
11* 3

(a) Prefix-based forwarding
table.

FIB entry Next-hop Priority
*** 1 0
101 1 3
1** 2 1
1 3 2

(b) Forwarding tables using general
wildcard expressions.

TABLE I: Two forwarding tables with identical forwarding
behavior.

address, the most-specific one is used, i.e., the one with the
longest prefix. To perform that procedure, the prefix tree is
traversed according to the bits in the address as far as possible.
Thereby, a ‘0’ or ‘1’ in the address denotes a move to the
left or right child in the tree. The last visited labeled node
corresponds to the most-specific forwarding entry.

The ORTC algorithm compresses a routing table with
general prefixes into a minimum-size prefix-based table using
prefix trees. Details are given in [7].

B. Wildcards Expressions and Logic Minimization

A wildcard expression w is a match field with wildcards ‘*’
in arbitrary positions of the match field so that a prefix can
be viewed as a very special wildcard expression. Wildcard
expressions can be used in forwarding entries in OpenFlow.
However, there are no analogue mechanisms for wildcard-
based FIBs like prefix trees and LPM. Therefore, forwarding
entries in OpenFlow require priorities to decide which of them
is to be used when several of them match an address. We
denote the priority of a wildcard expression as prio(w).

Logic minimization compresses a set of logical expressions
into an equivalent set of logical expressions that covers the
same on-set. The Espresso heuristic was developed for logic
minimization in the context of very-large-scale integration
(VLSI) synthesis. It does not guarantee minimum size results
but is faster and requires less memory than exact minimizers
[6]. In the remainder of the paper we denote E(P) as the
minimized result of the Espresso on the prefix set P .

As wildcard expressions can be interpreted as logical ex-
pressions, we can compress a set of wildcard expressions P
into a possibly smaller set of wildcard expressions E(P). As
a consequence, we can also minimize a set of prefixes W into
a smaller set of wildcard expressions E(W).

C. Compression of Forwarding Tables Using Logic Minimiza-
tion

We apply logic minimization for compression of prefix-
based forwarding tables. A naive approach is to combine all
prefixes with the same next-hop. As a result, the prefixes ‘01*’
and ‘11*’ with next-hop 3, i.e., (‘01*’, 3) and (‘11*’, 3), can
be combined to forwarding entry (‘*1*’, 3) and the forwarding
entry (‘1**’, 2) remains unchanged. It is important to assign
higher priority to entry (‘*1*’,3) than for (‘1**’,2) to preserve
the forwarding behavior. Otherwise, packets addressed to
addresses ‘11*’ would be forwarded to the wrong next-hop.

A problem occurs if we combine (‘***’, 1) and (‘101’, 1)
to (‘***’, 1) because then either packets destined to ‘1**’ or
packets destined to ‘101’ are forwarded to the wrong next-
hop, depending on whether (‘***’, 1) or (‘1**’, 2) is assigned
higher priority. This happens because prefix ‘***’ contains the
other prefix ‘101’ and the other node (‘1**’, 2) with a different
next-hop lies on the path between (‘***’, 1) and (‘101’, 1).
Thus, such situations need to be avoided in sets of prefixes P
with same next-hops that are compressed by Espresso.

To avoid the mentioned problems, we partition all entries
in a forwarding table into sets with equal next-hops and equal
prefix length. Thus we compress all prefixes Pj

i with the
same next-hop j on the same level i of a prefix tree with
Espresso to a set of wildcard expressions E(Pj

i). The priority
assigned them is the original prefix length, i.e., prio(w) =
i : w ∈ E(Pj

i). These priorities assure the same forwarding
behavior as LPM on the prefix-based forwarding table. As the
proposed compression approach cannot compress forwarding
entries with different-length prefixes, we first run the ORTC on
the original forwarding table and use a minimum-size prefix
tree as input to the described procedure.

We have investigated two other methods to define sets of
forwarding entries to be compressed and appropriate priori-
ties. These sets contained different-length prefixes. Evaluation
results showed that these approaches lead to less compression
so that we do not consider them in this paper.

D. Compression Speedup

The runtime of the Espresso algorithm is exponential with
regard to the number of input expression. Therefore, the com-
pression is slow for a large set of prefixes to be compressed.
To reduce the compression time, we propose a maximum
set threshold T . We partition the sets Pi

j into smaller sets
with at most T forwarding entries, taken consecutively from
the minimum-size prefix tree when going from left to right
on the same level. These subsets of prefixes are individually
compressed into sets of wildcard-expression by Espresso.
They lead to less compression potential but to shorter overall
compression time compared to the approach without threshold.

E. Incremental FIB Updates

Routing table updates consist of prefix additions and re-
movals. This also holds for changed next-hops in the forward-
ing table. ORTC is fast and can be used to quickly compute
a new minimum-size prefix-tree. The changed nodes result in
prefixes that need to be removed or added to the wildcard-
compressed forwarding table. Adding prefixes is simple as
they do not even need to be compressed; optimizations are
possible.

We illustrate a procedure to remove a prefix p from a set
of wildcard expressions W by an example. Consider that the
prefix p = ‘10011∗′ of length 5 has to be removed from a set
of wildcard expression W . Let w = ‘1 ∗ 0 ∗ 1∗′ be the only
expression of priority 5 that matches p. We split w into a set
of smaller wildcards W ′ = {110 ∗ 1∗, 10001∗, 10011∗} and

0

50000

100000

150000

200000

250000

300000

350000

0 1 2 3 4 5 6

of

 F
IB

 e
nt

ri
es

ORTC
T = 100

T = ∞

of next-hops nhops
next

Fig. 3: Number of FIB entries after pure prefix compression
by ORTC and for further wildcard compression by Espresso
with and without maximum set threshold T .

remove the prefix p from this set. The updated set of wildcard
expressions is then W∗ =W \ w ∪ (W ′ \ p).

The resulting sets of wildcard expressions are not minimal
but did not require time-consuming Espresso minimization.
Improved results can be obtained after another Espresso min-
imization E(W∗).

V. RESULTS

In this section we apply the presented compression algo-
rithms to realistic data sets. We evaluate and compare their
compression ratios, analyze the structure of the compressed
data, and study the algorithm runtime depending on the
threshold parameter.

A. Investigated Data Set

As a base for our study, we use a RIB of 2013 from the
Route Views project [3] with 500,495 IP prefixes. The RIB is
converted into a pseudo-FIB by assigning a next-hop to each
prefix. To that end, we assume up to nnexthops different next-
hops. Each prefix is assigned one of these hops with equal
probability. We compress that FIB using the ORTC algorithm
which yields a minimum size prefix-tree for further wildcard
compression. For each number of next-hops nnexthops we generate
10 random FIBs and report mean values for presented results.
We also investigated data sets from prior years (2009 – 2012)
but we do not show those results as they do not add further
insights.

B. Compression Ratio

We first quantify the compression potential of FIBs in
carrier networks through wildcard compression by considering
the compression ratios achieved by the heuristic approaches.
Figure 3 compares the number of FIB entries generated by
ORTC with the number of FIB entries after further wildcard
compression for different numbers of next-hops nnexthops. The
number of FIB entries obtained after pure prefix compression
by ORTC increases with increasing number of next-hops from
50,000 to 350,000. For a single next-hop, there are about
50,000 FIB entries instead of a single default route. The reason

9

10

11

12

13

14

15

16

17

18

0 1 2 3 4 5 6

C
om

pr
es

se
d

fr
ac

ti
on

 (
%

)

T = ∞
T = 10000

T = 5000
T = 1000

T = 500
T = 250
T = 100

of next-hops nhops
next

Fig. 4: Fraction of FIB entries compressed by Espresso de-
pending on the maximum set threshold T .

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30

of

 e
nt

ri
es

Prefix length / priority

ORTC
E (all entries)

E (non-prefixes)

Fig. 5: Number of FIB entries per prefix length for ORTC
and after wildcard compression by Espresso without threshold
(T = ∞). For Espresso, the number of FIB entries with
wildcards is also given.

for that is the assumption of a full routing table so that packets
need to be dropped in the absence of a matching entry. The
figure also provides values for wildcard compression with
Espresso with maximum set thresholds of T = 100 and
T = ∞. We observe that this further compression reduces
the number of FIB entries by 30,000 – 40,000 in the presence
of at least nnexthops = 2 next hops. Furthermore, Espresso yields
hardly more FIB entries when applying a low maximum set
threshold of T = 100 than without such a threshold (T =∞).

As the loss of compression due to the maximum set thresh-
old T is hardly visible in Figure 3, we present the compressed
fraction ρ in Figure 4, i.e., the fraction by which further wild-
card compression can reduce the size of the minimum prefix-
based flow table. The compressed fraction ranges between 9%
and 17% and depends both on the number of next-hops nnexthops

and the applied maximum set threshold T . The compressed
fraction decreases with decreasing threshold, but the loss in
compression is at most 2% even for a very low maximum set
threshold of T = 100. A threshold of T = 500 leads only to
1% loss in compression.

0

5

10

15

20

25

0 5 10 15 20 25 30

C
om

pr
es

se
d

fr
ac

ti
on

 (
%

)

Priority / prefix length

Fig. 6: Compressed fraction per prefix length for wildcard
compression with Espresso without threshold (T =∞).

C. Analysis per Prefix Length

Figure 5 shows the number of FIB entries generated by
ORTC sorted by prefix length. Most prefixes have length
24. Smaller prefixes down to prefix length 17 appear with
decreasing frequency. Prefix length 16 is about as frequent as
prefix length 18 and again, smaller prefixes down to prefix
length 14 appear with decreasing frequency. All other prefix
lengths hardly occur. The reason for this phenomenon is that
standard prefix lengths are /16 and /24 which are already
combined to shorter prefixes by CIDR in the BGP RIB or
by the ORTC through prefix aggregation.

The figure also shows the number of FIB entries per prefix
length after further wildcard compression and the number of
FIB entries containing additional wildcards. The number of
more general wildcard expressions is rather low and most
of them contain only a single wildcard. So the compression
potential is rather moderate.

We applied the Espresso heuristic to equal-priority sets of
prefixes with equal length. Figure 6 shows the compressed
fraction per prefix length. For prefix length between 8 and
24 it is mostly in the order between 10% and 15%. Smaller
and larger prefixes are extremely rare so that their overall
fraction amounts to less than 0.1%. This suggests that Espresso
can compress efficiently only if the set FIB entries to be
compressed is sufficiently large so that there is a chance for
similar entries. We have also studied other approaches to create
equal-priority sets that do not reveal equal-length prefixes,
but the achieved compression ratio was lower. Apparently,
the compression potential is larger for sets of equal-length
prefixes.

D. Compression Time

We run Espresso on a computer with 8GB DDR3-RAM and
an Intel CPU i5-2500K with 4 cores, 6 MB cache and 3.3 GHz.
We implemented the compression in a single threaded C++
program that only uses one core. We measure the runtime for
the Espresso-based FIB compression only, i.e., the partitioning
work of the input FIB in smaller subsets is provided by a
different program.

Figure 7 shows the measured runtime of Espresso for
various numbers of next-hops nnexthops and for various maximum

0.1

1

10

100

1000

0 1 2 3 4 5 6

R
un

ti
m

e
(s

)

T = 100
T = 250
T = 500

T = 1000
T = 5000

T = 10000

T = ∞

of next-hops nhops
next

Fig. 7: Runtime of Espresso-based compression for complete
FIBs depending on the maximum set threshold T .

set thresholds T . Without such a threshold (T = ∞), the
compression for a single next hop takes about 22 s, but for
more next-hops the runtime increases from 341 s to 436 s.
The runtime is greatly reduced by applying maximum set
thresholds. For moderate thresholds of T = 500 the Espresso
runtime decreases to a range between 7 s and 11 s. Low
thresholds of T = 100 and T = 250 require even for
nnexthops = 5 a maximum compression time of less than 1 s or
2 s. Thus, the application of maximum set thresholds reduces
the compression time by orders of magnitude while degrading
the compressed fraction by 1% – 2%.

VI. CONCLUSION

We presented a concept for the use of OpenFlow-based
SDN in carrier networks. In some design variants, OpenFlow
switches need to accommodate the full inter-domain routing
information which is rather challenging as flow table size
is limited. As OpenFlow supports match fields with general
wildcards, we propose to compress prefix-based FIB entries
into FIB entries using general wildcards using the Espresso
heuristic. This is feasible with SDN as the computation-
intensive compression can be performed by a network appli-
cation on a server instead by the switch.

We showed that our proposed method reduces FIB sizes
based on a BGP RIB of 2013 with about 500,000 entries by up
to 17%. As the runtime of Espresso is exponential with regard
to input size, we propose a maximum set threshold to trade
runtime against compression rate. Thereby, the compression
time could be reduced by orders of magnitude down to less
than 1 s or 2 s while sacrificing 1% – 2% compression ratio.
Routing updates can be added incrementally.

This compression potential is certainly not large enough to
fit the large amount of routing information into the TCAM of a
today’s custom OpenFlow switch to enable forwarding without
misses of flow table entries. However, the method may be used
to compress a rather stable part of the flow table to leave more
room for other less frequently used flow table entries.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communications
Review, vol. 38, no. 2, pp. 69–74, 2008.

[2] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“OpenFlow: Meeting Carrier-Grade Recovery Requirements,” Computer
Communications, 2012.

[3] “Route views project page,” Mar. 2014. [Online]. Available:
http://www.routeviews.org/

[4] B. Agrawal and T. Sherwood, “Modeling TCAM POWER for Next
Generation Network Devices,” in IEEE International Symposium on
Performance Analysis of Systems and Software, Mar. 2006, pp. 120–
129.

[5] L. Luo, G. Xie, S. Uhlig, L. Mathy, K. Salamatian, and Y. Xie,
“Towards TCAM-based Scalable Virtual Routers,” in ACM Conference
on emerging Networking EXperiments and Technologies (CoNEXT),
2012, pp. 73–84.

[6] R. L. Rudell, “Multiple-Valued Logic Minimization for PLA Synthe-
sis,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/ERL M86/65, 1986.

[7] R. Draves, C. King, V. Srinivasan, and B. Zill, “Constructing Optimal
IP Routing Tables,” in IEEE Infocom, 1999, pp. 88–97.

[8] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and Implementation of a Routing Control
Platform,” in USENIX Syposium on Networked Systems Design &
Implementation (NSDI), 2005, pp. 15–28.

[9] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Corrêa,
S. C. de Lucena, and R. Raszuk, “Revisiting Routing Control Platforms
with the Eyes and Muscles of Software-Defined Networking,” in ACM
Workshop on Hot Topics in Software Defined Networks (HotSDN), 2012,
pp. 13–18.

[10] R. Bennesby, P. Fonseca, E. Mota, and A. Passito, “An Inter-AS Routing
Component for Software-Defined Networks,” in IEEE/IFIP Network
Operations and Management Symposium (NOMS), 2012, pp. 138–145.

[11] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang, “Lever-
aging Zipf’s Law for Traffic Offloading,” ACM SIGCOMM Computer
Communications Review, vol. 42, no. 1, pp. 16–22, Jan. 2012.

[12] A. Gupta, M. Shahbaz, L. Vanbever, H. Kim, R. Clark, N. Feamster,
J. Rexford, and S. Shenker, “SDX: A Software Defined Internet Ex-
change,” Tech. Rep., 2013.

[13] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP Routing Stability
of Popular Destinations,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet Measurment, 2002, pp. 197–202.

[14] T. Yang, B. Yuan, S. Zhang, T. Zhang, R. Duan, Y. Wang, and B. Liu,
“Approaching Optimal Compression with Fast Update for Large Scale
Routing Tables,” in IEEE International Workshop on Quality of Service,
2012, pp. 32:1–32:9.

[15] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh, J. Wang,
and P. Francis, “SMALTA: Practical and Near-optimal FIB Aggrega-
tion,” in ACM Conference on emerging Networking EXperiments and
Technologies (CoNEXT), 2011, pp. 29:1–29:12.

[16] Y. Liu, X. Zhao, K. Nam, L. Wang, and B. Zhang, “Incremental
Forwarding Table Aggregation,” in IEEE Globecom, Dec. 2010, pp. 1–6.

[17] G. Rètvàri, J. Tapolcai, A. Kõrösi, A. Majdàn, and Z. Heszberger,
“Compressing IP Forwarding Tables: Towards Entropy Bounds and
Beyond,” in ACM SIGCOMM. Hong Kong, China, Aug. 2013, pp.
111–122.

[18] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet Classification
Using Multidimensional Cutting,” in ACM SIGCOMM, 2003, pp. 213–
224.

[19] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM Razor: A Systematic
Approach Towards Minimizing Packet Classifiers in TCAMs,” IEEE/
ACM Transactions on Networking, vol. 18, no. 2, pp. 490–500, Apr.
2010.

[20] A. X. Liu, E. Torng, and C. Meiners, “Firewall Compressor: An
Algorithm for Minimizing Firewall Policies,” in IEEE Infocom, Phoenix,
Arizona, April 2008.

[21] C. R. Meiners, A. X. Liu, and E. Torng, “Bit Weaving: A Non-prefix
Approach to Compressing Packet Classifiers in TCAMs,” IEEE/ACM
Transactions on Networking, vol. 20, no. 2, pp. 488–500, Apr. 2012.

[22] R. McGeer and P. Yalagandula, “Minimizing Rulesets for TCAM
Implementation,” in IEEE Infocom, Apr. 2009, pp. 1314–1322.

