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Abstract—In this paper we propose and investigate load-
dependent load balancing for resilient OpenFlow networks. The
objective is to spare extra capacity for the primary path of a
traffic aggregate (flow) by accommodating excess traffic on its
backup path.

The contribution of the paper is manyfold. We explain existing
OpenFlow features for traffic monitoring and dynamic flow
splitting, combine them to implement load-dependent balancing
of a flow’s traffic on its primary and backup paths, and propose
three different load-dependent flow splitting (LDFS) policies.
We develop a performance evaluation method to quantify the
capacity for load-balancing and protection switching methods
such that expected traffic can be accommodated for envisioned
overload and failure scenarios. Finally, we assess the usefulness
of LDFS by comparison with traffic-agnostic single- or multipath
forwarding methods.

Index Terms—Software-defined networking, OpenFlow, traffic
engineering, monitoring, load balancing

I. INTRODUCTION

Network operation includes the possibility of network fail-
ures, traffic shifts, and traffic overloads. Network failures are
considered typically short-lived [1] but protection schemes are
necessary to minimize the traffic loss. Traffic overloads are
often caused by inter-domain routing effects [2] or network
failures. Re-configuration of the network can solve these prob-
lems. However, network updates can be difficult to perform
properly [3], i.e., have to avoid micro-loops, or can have a
notable impact on inter-domain routing [4]. A dynamic load
balancing approach has the potential to handle temporary
overloads. Then, the difficult reconfiguration process could
only be applied for overloads that take place over longer time
periods.

Software-defined networking (SDN) and OpenFlow [5] pro-
vide flexibility, programmability, and the ease of introduc-
tion of new services [6] in communication networks. The
OpenFlow protocol [7] was continuously enhanced to support
resilience, quality of service (QoS), and traffic engineering
features. In this paper, we discuss the OpenFlow features that
can be used to implement load-dependent flow splitting. This
novel forwarding behavior can be used to handle temporary
overloads on demand.

We propose load-dependent flow splitting (LDFS) that ap-
plies load balancing to a flow or aggregate based on the
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current load, i.e., traffic is normally sent over the primary
path but traffic overloads trigger load balancing. We propose
three policies how traffic can be distributed on multiple paths.
Then, we provide a methodology to analyze routing methods
with regard to traffic overload models and network scenarios.
Finally, we analyze the performance impact of dynamic load
balancing with LDFS compared to single-shortest path and
multipath routing.

The remainder of this paper is structured as follows. Sec-
tion II gives an overview of related work. In Section III,
we describe the load-dependent flow splitting in detail as
well as the implementation possibilities with OpenFlow. The
evaluation methodology is described in Section IV. Section V
provides the performance study and Section VI concludes this
paper.

II. RELATED WORK

Traffic engineering (TE) for software-defined networking
is discussed in [8]. They optimize the network with regard
to network utilization, improved delay, and loss performance.
They also cover the optimization process in networks where
SDN is incrementally introduced.

Google describes in [9] their internal global network that
interconnects their data centers worldwide and show how
traffic engineering can be supported by routing decisions.
Their traffic engineering server schedules operations depend-
ing on the available bandwidth in the network. They show
significant effects in resource utilization in the context of data
center synchronization and communication which may not be
applicable to typical communication networks.

Multipath traffic engineering is considered in [10]. The
authors propose the use of multiple paths from source to
destination with optimized split ratios between those paths. A
mixed-integer linear program (MILP) is defined that provides
optimized path layouts with regard to state trade-offs. Self-
protecting multipath [11] is a similar approach that uses
multiple paths from source to destination to combine resilience
and traffic engineering aspects. In contrast to our work, these
methods operate leveraging results from an offline optimiza-
tion process for configuration. We are investigating the impact
of dynamic load balance dependent of the current rate on a
flow.

Data plane resilience is an important aspect for our dynamic
load balancing approach. Various works were presented that
discuss practical aspects of protection schemes for OpenFlow
networks. The authors of [12] are discussing the requirement
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Fig. 1: Group table entries for OpenFlow 1.1 and later.

of bidirectional forwarding detection (BFD) for OpenFlow
switches to achieve fast protection. A BFD component is
responsible to monitor the ports by sending hello and echo
messages frequently over the links to detect network failures.
The authors show the viability of the approach using experi-
ments based on MPLS Transport Profile. In [13], the authors
provide fast protection using BFD for the Open vSwitch and
were able to show protection times between 3 ms and 30 ms
in practice.

III. LOAD-DEPENDENT FLOW SPLITTING

In this section we explain load-dependent flow splitting
(LDFS) for resilient OpenFlow networks. We discuss required
OpenFlow features to implement our proposed routing mech-
anism. Finally, we describe three different load balancing
options for the proposed method.

A. Requirements

OpenFlow networks consist of a separated control and data
plane. The forwarding elements depend on the configuration of
the controllers to operate properly. Therefore, we assume that
backup paths are available to cover the interval of a disrupted
switch-controller communication. Otherwise a switch cannot
operate in a timely manner when a network failure in the
control plane occurs. This is more problematic when the
control and data plane share a common physical infrastructure
because network failures affect both planes.

Typically, network operators provide additional backup ca-
pacities. We propose to use these capacities when traffic
overload occurs, i.e., when a traffic flow or aggregate carries
increased load, we perform load balancing on the primary and
secondary path towards the destination. Otherwise, the switch
sends traffic over the primary path unless a network failure
happens. In such a case, the switch sends the traffic on the
unaffected path.

Therefore, we require programmable load balancing for
OpenFlow switches, be able to provide backup paths, and
monitor the current rate of flows. In the following sections,
we discuss these required features for OpenFlow with regard
to the different specifications. Then, we provide a detailed
description of LDFS and three different policies.

B. Load Balancing with OpenFlow Switches

Load balancing requires OpenFlow group tables which
are defined in OpenFlow 1.1 and later. Group tables enable
OpenFlow to perform additional forwarding methods such as
flooding of packets, load balancing, fast failover, etc.

Multiple flow entries can point to a single group table entry
and they are all forwarded in the same way. The structure of
a group table entry is illustrated in Figure 1. It consists of an
unique identifier, the group type, counters, and an ordered list

of action buckets. An action bucket contains a set of actions
that are executed on packets when the bucket is selected.

The group type defines the semantic of the group. The
optional group type select provides load balancing by selecting
one of the buckets for each packet. For example, if a group
should load balance through port 2 and port 3, two action
buckets have to be defined; the buckets contain the actions
“forward to port 2” and “forward to port 3”, respectively.
The switch computes the action bucket to be chosen by
a selection algorithm that is outside of the scope of the
OpenFlow standard. Potential algorithms can be based on hash
values over match fields or a simple round robin approach.
Note that, the selection algorithm is only allowed to select
live action buckets. We cover liveness in the next section.

C. OpenFlow Resilience

OpenFlow resilience is related to the control plane and to
the data plane. Control plane resilience topics are resilient con-
troller placement, multiple controller availability, etc. In this
work, we require data plane resilience which is provided by
backup paths. OpenFlow has optional support for backup paths
through group tables which are described in Section III-B.

The group type fast failover implements backup paths. The
actions of the first live action bucket are applied to packets. In
the example above, packets are sent over port 2 until it goes
down. Then, port 3 is used. Therefore, each action bucket
requires a signaling mechanism to trigger the liveness of the
group or the port. The OpenFlow specification leaves the
implementation details open. Adding a bidirectional forward-
ing detection (BFD) component to an OpenFlow switch can
achieve protection against failures within 50 ms [12], [13].

D. OpenFlow Monitoring Capabilities

The OpenFlow protocol defines counters for the main com-
ponents of a switch. Counters exist for tables, ports, queues,
and table entries. These counters are updated when packets
are processed by the switch. Each flow table entry and each
group table entry contain counters that measure the entry’s
duration, received packets, and received bytes. Although the
received packet statistics are optional, they have the potential
to provide the necessary statistics for flow and aggregate
rates that are required to implement LDFS. However, statistic
generation using counters is difficult to manage in practice
due to hardware restrictions. This problem is described for
OpenFlow switches in [14]. The authors provided a solution
that is able to generate statistics more efficiently.

OpenFlow’s monitoring capabilities were notably enhanced
in OpenFlow 1.3. Meter tables enable OpenFlow to imple-
ment simple QoS operations. In combination with per-port
queues, complex QoS frameworks such as DiffServ can be
implemented. Meter table entries contain a list of meter bands.
Each meter band has a specified rate on which it applies. The
meter with the highest configured rate that is lower than the
current measured rate is chosen. Thus, meters also have the
potential to implement LDFS.



E. Load-Dependent Flow Splitting (LDFS) Policies

The load-dependent flow splitting algorithm operates on
a set of individual flows or on macro flows. Macro flows
can be defined using wildcard-based OpenFlow match rules.
Individual flows can form an aggregate by applying the group
instruction which causes those flows to be processed by the
LDFS group. The rate of this aggregate is either measured
using the group counters or by a meter that is attached to the
corresponding flow table entries.

A new group type is required that behaves similarly to the
select type. In addition, the group requires a threshold rate
value T that distinguishes normal traffic from overload traffic.
When the threshold rate is not exceeded, the first action bucket
is executed. Otherwise, load balancing is performed on the
action buckets. Only live action buckets can be selected.

We propose three load balancing variants which behave
differently on overloads. In the following, we define the rate
of an aggregate g as r(g) and the excess traffic rate as
re(g) = r(g)− T .

1) Balance All Traffic (BAT): When the threshold is ex-
ceeded we perform load balancing on the whole aggregate.
Then, the balance all traffic (BAT) method has the same
forwarding behavior as the multipath routing. Otherwise, the
primary path is selected.

2) Balance Excess Traffic (BET): The balance excess traffic
(BET) method is similar to the BAT method. However, only
the excess traffic is split over available paths instead the whole
aggregate traffic. This can be achieved by load balancing that
aims to have a load of T + re(g)

2 on the primary and re(g)
2 on

the secondary path.
3) Redirect Excess Traffic (RET): The redirect excess traffic

(RET) method redirects all excess traffic on the backup path.
A load balancing algorithm that sends a rate of T on the
primary and a rate of re(g) on the secondary path is a potential
implementation of RET.

IV. METHODOLOGY

In this section, we describe and explain the considered
traffic models. We present the network scenarios that model
the combination of network failures and traffic overloads and
discuss the computation of required link capacities depending
on a routing mechanism. Finally, we discuss the path compu-
tation for multipath routing and LDFS.

A. Notation

A network is a graph G = (V,E) where V is the set of
nodes and E is the set of edges or links. We denote the set of
aggregates as G. Each aggregate g ∈ G is characterized by its
source and destination (g = (s, d)) and has a rate r(g).

B. Traffic Models

We generate traffic matrices with the gravity model [15] for
the performance analysis. The gravity model uses a population
function π(n) on nodes n ∈ V and distributes the overall
traffic Ctot in such a way that more populated nodes send and

receive more traffic than less populated ones. The aggregate
rates r(g) are generated with

r(g = (v, w)) =

{
π(v)·π(w)·Ctot∑

x,y∈V,x6=y π(x)·π(y)
if s 6= d

0 if s = d

We investigate three different overload traffic models.
1) Hot Spot Model: The hot spot model [16] is a con-

servative overload model that shifts traffic locally to hot
spots. The overall traffic Ctot in the network is constant, i.e.,
flows attached to a hot spot have increased load while other
flows experience reduced load. This model is implemented by
applying an overload factor fo to the population function

πvhotspot(w) =

{
π(w) if v 6= w
fo · π(w) if v = w

2) Node Overload Model: The node overload model in-
creases the overall network rates which can be caused by
inter-domain routing [16], [2]. An overloaded node causes all
attached flows to carry a multiple of the original load, i.e., the
rate is multiplied with the overload factor fo.

3) Aggregate Overload Model: The aggregate overload
model shares the same basic idea as the node overload model.
In contrast, an aggregate instead of a node can be overloaded
having a rate multiplied with the overload factor fo.

C. Network Scenarios
We consider network failures and overloads. We model net-

work failures with link failures and traffic overloads with the
models described in Section IV-B. We refer to the combination
of link failures and traffic overloads as network scenario.
The scenario specifies all failed links and the traffic matrix
containing the rates of all aggregates.

We define various sets of network scenarios Si,j . This set
contains all scenarios that consist up to i simultaneous link
failures in combination with up to j simultaneous overloads.
For example, S0,0 contains one scenario: the failure-free case
with no overloads, S1,0 contains all single link failures without
overloads, etc.

We compute the required capacity for a routing mechanism
and a set of network scenarios S by measuring the traffic rate
for the routing mechanism with regard to the link failures and
the traffic matrix. We compute the required link capacity c(l, s)
for each link in each scenario s ∈ S. The required capacity
for a link is c(l) = maxs∈S c(l, s).

D. Path Computation for Multipath and LDFS
We compare single-shortest path routing, multipath routing

(MPR), and the LDFS variants (BAT, BET, RET). MPR and
LDFS both use the 2-shortest paths to highlight the impact of
the dynamic load balancing approach.

For each source and destination, two shortest paths are
computed that are maximally disjoint, i.e., share the least
number of links. The paths are computed with a k-disjoint
shortest path algorithm [17]. The shorter path is the primary
and the longer the secondary path. Note that this primary path
can be longer than the shortest path from the source to the
destination.



V. RESULTS

In this section, we present the performance evaluation of our
proposed method. First, we show the networks under study and
explain our metrics. We present our results and discuss the
impact of load-dependent flow splitting compared to single-
shortest path and multipath routing.

A. Networks under Study

We provide results for the Agis, Abilene, and GÉANT
networks that are publicly available at the “topology zoo”
[18]. The Agis and Abilene networks are long-haul backbone
networks in the USA. The former one consists of 25 nodes and
30 bidirectional links and the latter one consists of 11 nodes
and 14 links. The GÉANT network is a European research
network with 40 nodes and 61 links. We selected the human
population to generate the traffic matrices for the population
function [19], [20].

B. Metrics

We denote required link capacities for a set of network
scenarios S and a routing method m as c(S,m, l). The
computation of these capacities is described in Section IV-C.

The required network capacity is the sum of all link capac-
ities. The maximum link capacity can be an interesting metric
because higher rate interfaces are generally more expensive
than lower rate interfaces.

We use values relative to single-shortest path routing (SPR)
to simplify the comparison of multipath routing and LDFS.
Thus, we define the relative required network capacity as

Cnet(S,m) =

∑
l∈E c(S,m, l)∑

l∈E c(S,SPR, l)

and the relative maximum link capacity as

Cmaxlink (S,m) =
maxl∈E c(S,m, l)

maxl∈E c(S,SPR, l)

C. Impact on Required Network Capacity

We present the results for the required network capacity for
the GÉANT network, the hot spot model, and an overload
factor of fo = 3. The results of the other networks, models,
and overload factors are very similar and additional figures do
not provide further insight. However, differences are explicitly
stated in the text.

Figure 2 shows the relative required network capacity in the
GÉANT network for various network scenarios. The failure-
free case without overloads (S0,0) leads to approximately the
same required network capacity for LDFS and SPR because
LDFS only uses the primary paths. MPR requires additional
20% capacity which is caused by the usage of longer paths.
In single link failure scenarios (S1,0), both MPR and LDFS
results in 8% less capacity compared to SPR.

In overload scenarios without failures (S0,1, S0,2), BET
leads to less required network capacity than SPR and signifi-
cantly less than MPR, BAT, and RET. In the Agis network, we
reduced the required network capacity by approximately 13%
for BET compared to SPR. RET performs worse than the other

Fig. 2: The relative required network capacity in the GÉANT
network for various network scenarios. The traffic overload is
modeled by hot spots with a factor of 3.

routing methods. When the overload factor is increased, the
required network capacity for RET increases significantly. This
is caused by sending a lot of traffic over the longer secondary
path when the load significantly exceeds the threshold rate.

For non-simultaneous overloads and failures scenarios
(S0,1∪S1,0, S0,1∪S1,0) we observe additional savings of 10%
compared to SPR. Yet, MPR and LDFS do not differ so clearly
in the GÉANT network. The BET method performs slightly
better than the other mechanisms in the Agis and Abilene
networks.

Almost no differences can be observed for the different
routing methods in network scenarios with simultaneous link
failures and traffic overloads (S1,1, S2,0∪S1,1, S1,2). In these
network scenarios, it is possible that one of the paths of an
overloaded flow is affected by a link failure. Then, there is
no path choice for both MPR and LDFS. Note that the RET
method provides notably higher required network capacities
for high overload factors than the other methods in these
network scenarios.

D. Impact on Maximum Link Capacity

Figure 3 shows the relative maximum link capacity in the
GÉANT network for various network scenarios. In S0,0, LDFS
methods are close to SPR and MPR leads to almost 30%
less maximum link capacity. However, for the Agis network
we observe significantly higher maximum link capacities for
the LDFS methods. Surprisingly, MPR performs worse in the
Abilene network which may be caused by the topology.

The maximum link capacities are equal for the routing
methods in network scenarios with failures (S1,0, S1,1, S2,0 ∪
S1,1, S1,2). We again explain this fact by the lack of choice for
MPR and LDFS in certain failure scenarios with simultaneous
link failures and overloads. In the GÉANT network, the
maximum link load is between 5–10% lower compared to
SPR. In the Agis and Abilene network it is close to SPR.



Fig. 3: The relative maximum link capacity in the GÉANT
network for various network scenarios. The traffic overload is
modeled by hot spots with a factor of 3.

The maximum link capacities differ significantly in network
scenarios with non-simultaneous link failures and overloads.
MPR and BAT often perform quite similar and requires up to
37% less capacity compared to SPR. MPR and BAT behave
equal in overload scenarios which explains the similarity with
regard to maximum link capacities. The BET method performs
better than SPR but approximately 12–20% worse than MPR.
In the Agis and Abilene networks, MPR and LDFS only
perform better than SPR in S0,1 and S0,2. In addition, the
maximum link capacity for BET is similar to MPR in the
Abilene network.

VI. CONCLUSION

In this work we proposed how load-dependent flow-
splitting (LDFS) can be implemented using monitoring and
fast failover mechanisms of OpenFlow, and suggested three
different load balancing policies (BAT, BET, and RET) for
traffic engineering. We compared the three LDFS variants
with traffic-agnostic single-shortest-path and 2-shortest-paths
routing (SPR, MPR) with regard to required network capacity
and maximum link capacity. A special LDFS requires least
capacity when networks are expected to accommodate traffic
for non-simultaneous link failures and traffic overloads, but
MPR requires least link capacities. However, when networks
were provisioned for simultaneous failures and overloads,
capacity savings by LDFS diminished.
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