(©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Scalable Resilience for Software-Defined
Networking Using Loop-Free Alternates with Loop
Detection

Wolfgang Braun, Michael Menth
University of Tiibingen, Department of Computer Science, Germany

Abstract—In this paper we propose a novel resilience scheme
for OpenFlow-based Software-Defined Networking (SDN). To
forward packets in line speed, OpenFlow switches store their flow
tables in expensive, limited TCAM due to which the stored tables
cannot be large. Most resilience mechanisms require additional
entries thus the implementation in OpenFlow may quickly exceed
the available TCAM.

Loop-Free Alternates (LFAs) are a standardized mechanism
for fast reroute in IP networks which do not require additional
entries. However, LFAs cannot protect against all single link and
node failures. Moreover, some LFAs even cause loops in case of
some node failures or multiple failures, making additional links
unusable. Excluding such LFAs reduces the fraction of protected
destinations (protection coverage) in nodes even further.

We suggest a scheme for detection of loops caused by LFAs. It
maximizes the protection coverage because it allows all LFAs to
be used without creating loops. We describe how LFAs and the
loop detection scheme can be implemented in OpenFlow networks
with only little packet overhead and a single additional entry per
switch.

We evaluate our proposal on real network topologies of varying
size and connectivity. In particular, we quantify the benefit gained
from loop detection. Amongst others, we study the percentage
of failures that cannot be protected by LFAs at all, and the
percentage of failures in which conventional LFAs cause extra
loops.

Index Terms—Software-Defined Networking, OpenFlow, Re-
silience, Loop-Free Alternates, Scalability

I. INTRODUCTION

Software Defined Networking [1] (SDN) has gained a lot
of attention in the recent years due to its ability to program
the network and introduce new features and services easily.
Many of these approaches require many fine-grained flow
definitions to control the traffic as desired [2]. This can
significantly increase the number of required flow table entries.
However, flow table entries must be stored in Ternary Content
Addressable Memory (TCAM) to enable fast packet matching
in OpenFlow switches. TCAM is expensive and, thus, often
limited in size which can lead to severe scalability issues
with OpenFlow-based SDN. Another example is inter-domain
routing with OpenFlow [3]. Current routing tables contain so
many IP prefixes that only a few or even none additional
forwarding entries can be stored in the forwarding tables.

This work has been supported by the German Federal Ministry of Education
and Research (BMBF) under support code 16BP12307 (EUREKA-Project
SASER). The authors alone are responsible for the content of the paper.

Resilience is an important topic for OpenFlow-based SDN
due to its separation of the control and data plane. Switches
rely on the correct and timely configuration of its controller.
Network failures can affect the performance of an OpenFlow
network in several ways. The switch has to drop the packets
until the controller reconfigures the switch. The situation
is even more severe if the OpenFlow control channel is
transmitted over the same physical infrastructure because it
can be affected by the failure itself. Therefore, researchers
are interested to establish backup paths that can mitigate the
effects of failures.

In this work we address both the resilience and the scal-
ability issues in OpenFlow networks. We are interested in a
resilience mechanism that (1) has full coverage against single
link failures, (2) requires the least amount of state in the
switch, and (3) can handle node and multiple link failures
appropriately. In this work, we focus on the implementation
of LFAs which are a simple rerouting mechanism without
additional state requirements. However, LFAs do not provide
full coverage against all failures and do not fulfill (1) and we
will address this in future work. In addition, we propose LFAs
with loop detection that protects more traffic flows than LFA
which are loop-preventing.

The remainder of the paper is structured as follows. Sec-
tion II discusses related work in the area of fast reroute and
scalability for OpenFlow. We present the concept of LFAs in
Section III. Section IV explains how LFAs can be implemented
with OpenFlow and we propose the loop-detecting LFAs.
Section V presents the coverage statistics and Section VI
summarizes this work and outlines our future work.

II. RELATED WORK

In [4], the restoration process of OpenFlow in carrier-grade
networks was analyzed. They measured the time a controller
re-configures the switches in a real testbed when network
failures occur. Their results show that the controller reacts in
a time frame between 80 and 130 ms. They also state that the
restoration time will be a magnitude higher for large networks
and, therefore, local protection schemes are required.

Local failure protection is considered in [5]. They introduce
a bidirectional forwarding detection (BFD) component to the
OpenFlow switch design to achieve fast protection. A BFD
component is responsible to monitor the ports by sending hello
and echo messages frequently over the links to detect network



Fig. 1: Example network for LFA computation.

failures. The authors show the viability of the approach using
experiments based on MPLS Transport Profile. A similar
approach is presented in [6]. The authors also provide fast
protection using BFD for the Open vSwitch and analyze
the protection switching times. They were able to show that
the implementation was able to react within 3 and 30 ms
depending on different BFD configurations.

The SlickFlow approach [7] provides resilience in data cen-
ter networks (DCN) using OpenFlow and is based on source
routing. Primary and alternative backup paths are encoded in
the packet header and OpenFlow primitives enable hardware-
based forwarding. The authors showed positive benefits in a
virtualized testbed on DCN topologies.

IP fast reroute (FRR) is an important topic for the rout-
ing working group in the IETF and various approaches are
discussed: LFAs [8], remote LFAs (rLFAs) [9], [10], not-
via addresses, and maximally redundant trees [11]. LFAs
and rLFAs are simple and require no additional forwarding
entries but cannot protect against all single link failures. The
latter mechanisms provide full coverage but require additional
forwarding entries. The combination of LFAs and not-via
addresses cannot significantly reduce the required state [12].
MPLS FRR [13] defines several ways to protect the network
against failures but explicit backup paths require additional
entries which can be reduced by the use of shared tunnels. A
comparison of IP-based and MPLS FRR is given in [14].

Inter-domain routing for OpenFlow is improved using wild-
card compression in [3]. However, the required forwarding
state is still challenging and there is not much space left in
the forwarding entries for backup paths. Another compression
for Access Control Lists (ACLs), i.e., applicable to OpenFlow
table entries, is proposed in [15]. This method preserves space
in the forwarding table that can be used for backup paths.

III. LooP-FREE ALTERNATES (LFAS)

Loop-Free Alternates (LFAs) [8] were proposed by the IETF
for IP fast reroute (IP FRR). LFAs are simple but cannot
protect against all single link and node failures. They do not
require additional forwarding entries but a forwarding entry
has to contain a list of alternate next-hops.

The idea of LFAs is very simple: if a failure occurs, packets
can be sent to a neighbor if this redirection will not cause a
loop. LFAs can be easily computed with a distance function
dist(u, v) that is used for the primary hop computation. LFAs
can protect against (1) single link failures, (2) node failures,

and (3) multiple network failures depending on the use of
the following three LFA conditions. We will explain these
conditions by example with the network shown in Figure 1.
Packets are sent from source S’ towards destination D on the
shortest path through node P.

The loop-free condition (LFC) protects against single link
failures. A neighbor N of S fulfills the condition if

dist(N, D) < dist(N, S) + dist(S, D) (1)

holds. In the example, this is true for the nodes A (LFC: 2 < 5)
and B (LFC: 3 < 5) because the distance from them towards
destination is smaller than the redirection over S.

The node protecting condition (NPC) prevents the selection
of neighbors that may cause a loop if the primary next-hop
has failed. The condition is defined as

dist(N, D) < dist(N, P) + dist(P, D). )

Consider that node P in the example has failed. Node A fulfills
the LFC but not the NPC (2 £ 2). Packets sent to A will loop
because .S is a simple LFA for A to D (LFC: 3 < 4). Node
B is node protecting (3 < 5) and packets sent to B will not
traverse P.

The downstream condition (DSC) protects against multiple
failures by only redirecting traffic to neighbors that are closer
to the destination:

dist(N, D) < dist(S, D). 3)

Node B is not downstream (3 £ 3) and packets would loop
between B and S when both S — P and B — D are failing
because S is a simple LFA for B towards D (3 < 5). A
is downstream (2 < 3) and will not cause a loop even if
A — P has failed because S is not downstream for A towards
D (3 #£ 2). Note that DSC and NPC are orthogonal, i.e., a
downstream LFA can either be node protecting or not.

In this work we compute three kinds of LFAs. First, simple
LFAs that only fulfill the loop-free condition (LFA-LFCs)
which may cause loops when node or multiple failures occur.
Second, node protecting LFAs that both fulfill LFC and NPC
(LFA-NPCs) that prevent loops for single link and single
node failures, and finally loop-preventing LFAs that fulfill the
downstream condition (LFA-DSCs).

IV. OPENFLOW AND LFAS

In this section, we propose LFAs with loop detection that
use additional failure information in the packet header to
drop looping packets. We discuss how LFAs with and without
loop detection can be implemented with OpenFlow. Then, we
discuss how failure information can be encoded in packets
with little packet overhead.

A. Improving LFAs with Loop Detection

When LFAs for a network are computed to protect against
node failures, the node protecting condition can exclude
neighbors that protect against single link failures. In general,
this leads to fewer alternate next-hops that are allowed to be
selected. In addition, if only link failures occur, there may be



a LFA available but it is not allowed to be chosen due to the
more restricted condition.

Our LFA approach selects LFAs with the highest protection
first and reverts to less protecting LFAs if necessary, i.e., we
select potential LFAs with degrading degree of protection: (a)
NPC and DSC, (b) DSC, (¢) LFC and NPC, and (d) LFC
only. LFAs of category (a) cannot loop and LFAs with (b)-(d)
may loop depending on the exact failure scenario. Therefore,
we apply a mark for LFAs (b)-(d) into the packet header.
This mark encodes the failure detecting node. Packets either
are successfully redirected towards the destination or a loop
occurs. In the latter case, the node can check if the packet
contains its location mark and prevents the loop by dropping
the packet.

It is important that marks can be incrementally applied to a
packet that is sent on alternative paths when multiple failures
occur. We explain this with the example network shown in
Figure 1. Consider that packets are sent from S to D and the
links S — P and A — P have failed. Packets have to be
redirected over A because there is no LFA of category (a) and
A is a LFA of category B. The mark for node S is applied
and redirected to A. The packet is not dropped because it has
no mark for node A and S is a LFA of category d for A. The
mark for A is applied and the packet is sent to S. The loop
can be successfully detected in S if the mark of A does not
overwrite the mark of S.

Such marks can be implemented using a bit string of a
certain length n. Each node has an ID 7 with 1 <7 < n and
its mark corresponds to the ¢-th bit in the string. If the number
of available bits in the field is less than or equal to the number
of nodes, the loop detection is optimal. If there are more nodes
in the network than available bits, we share IDs across nodes.
This can cause false positives when detecting loops and, thus,
can lead to unnecessary packet drops. We provide an algorithm
to compute appropriate IDs in Section IV-C and analyze the
impact of various bit lengths in Section V. We refer LFAs with
loop detection to LFA-IDs.

B. Implementation in OpenFlow and State Requirements

OpenFlow data plane resilience requires OpenFlow 1.1 [16]
or later and such an OpenFlow switch contains both flow tables
and a group table. A flow table consists of multiple entries and
each entry consists of a match and instructions. Flow table
entries match packets to flows and each flow entry can define
various actions or refer to a group table entry for advanced
packet processing. Note that the flow tables have to reside in
TCAM which is expensive and limited in size but enables fast
packet processing. The group table must not be stored inside
TCAM and can be part of less expensive memory.

A group table entry can be referenced by multiple flow table
entries and handles all related packets in the same fashion. The
group table entry contains a group type, a counters field, and
a field for action buckets. The group type defines the kind
of group. Backup paths can be implemented using the fast
failover group type. The action buckets are used to implement
the primary and secondary paths. For fast failover groups, each

action bucket has an associated port which defines its liveness
and triggers the use of a bucket.

We explain the group table for simple LFAs by the example
given in Section IV-A. Packets are sent from S to D. The
switch at S’ contains a flow table entry that matches specific
header fields, e.g., its IP address and this entry refers to a group
entry. The group entry has type fast failover and consists of
two action bucket. The first action bucket contains the action
to “forward to P” and the second bucket “forward to A”. If
the link to node P goes down, packets are immediately sent
over the next defined bucket, i.e., to node A. Note that no
additional flow table entries are required for LFAs.

LFAs with loop detection are implemented similarly. Con-
sider that the ID for S is 1 and the used bit string has length
5. We add an additional flow table entry that matches on the
bit string with the wildcard expression * % * % 1 and its action
is “packet drop”. Thus, only packets that loop back to S, i.e.,
are marked with ID 1, will be dropped. The first action bucket
of the group is unchanged. The second action bucket now
contains two actions: “apply ID 1” and “forward to A”.

In OpenFlow, all header fields that are used for forwarding
have the potential for ID encoding. For example, the DSCP
and ECN field (8 bits) of an IP header can be used if they
are not needed in the OpenFlow network. Another potential
solution uses the MPLS header to encode the ID. The MPLS
header consists of 32 bits and 20 bits are reserved for the
MPLS label.

C. Computing IDs for Fixed Bit Lengths

For correctly detecting forwarding loops, each node needs
a unique ID. Thus, we want to avoid that two nodes that
are part of the same backup path to have the same ID. We
have developed an algorithm that computes IDs for nodes in
such a way that each node with ID z is maximally distant
towards nodes with the same ID z. The algorithm is shown in
Algorithm 1 and colors the nodes of the graph with the IDs.

First we order the nodes by descending node degree because
nodes of high node degree are probably part of many paths.
(1) Then, we consecutively assign the colors to the first n
nodes. If all nodes are colored, the algorithm is finished.
(2) Otherwise, we compute for each uncolored node v the
color with the maximum distance. (3) We rate each color with
respect to the current node v by the sum m for every
colored node v.. (4) We select the color v using the lowest
rating which corresponds to the maximum distant color.

Note that, the proposed algorithm can be changed very
easily in a SDN environment. The computation runs in a
logically centralized control plane and, thus, only a few
elements must be updated. In general, the distance function
dist(u,v) is already computed in the control plane for the
primary next-hops which enables more complicated algorithms
as the presented for large scale networks.

V. RESULTS

In this section we quantify the percentage of flows that LFAs
can protect, cannot protect, or for which LFAs cause loops.



Algorithm 1: Color computation for restricted ID bit
length.

input : G = (V, E), distance function dist, and number
of bits ny
output: A node to color mapping C : V' — N

Vorderea <— ordered V' with descending node degrees;
C + empty color mapping;

1 < 0;

foreach v < V,,4ereq do

1 if i <ny then C(v) < i;
else
2 Cuist < empty : N — R;
foreach colored node v. do
3 ‘ Cdist(c(vc)) <~ Cdist(c(vc)) + ms
end
4 C(v) — minogignb Cdist (Z),
end
11+ 1;
end

The latter can be avoided through loop detection. We first
describe considered failure scenarios, then the performance
metrics, and the networks under study. We study the perfor-
mance of different types of conventional LFAs, and compare
it to the one of LFAs with loop detection. Finally, we discuss
the impact of the bit length for the ID encoding in packets.

A. Failure Scenarios

A failure scenario s is a set of failed links and nodes. We
define different failure scenario sets that cover different types
of network failures. The set S“™ contains all failure scenarios
where [ links and n nodes have failed. We analyze all single
link failures S'9, double link failures S20, all single node
failures S%!, and finally the combination of single link and
single node failures S*:!.

B. Metrics

In our analysis, we route the flow for a specific failures
scenario s through the network while applying certain fast
reroute algorithms. We investigate if the flow (1) successfully
reaches the destination, (2) is dropped because s removed all
physical paths to its destination, (3) is dropped although a
physical path to the destination still exists, and (4) causes a
microloop. We denote flows as protected if (1) and (2) hold,
as unprotected if (3) applies, and as looped if (4) holds. We
consider all possible flows in the network and calculate the
percentage of protected, unprotected, and looped flows for a
single failure scenario s. Considering a set of failure scenarios
S, we average these values over all failures contained in that
set.

C. Networks under Study

We evaluate the fast reroute mechanisms for various net-
works from the topology zoo [17]. We classify these topologies

171 | V] | avg(IV]) |Z| avg(lE]) | 6
T, | 37 | 4-82 25 5-382 24.6 1.89
Tr | 68 | 6103 31 6103 34.6 22
Tar | 82 | 6-176 32 10-105 | 449 | 2.96

TABLE I: Statistics for the topology sets. For each topology
set we provide the number of topologies, nodes, and bidirec-
tional edges. We also provide the average node degree §.

LFC
80 % - % g % = 80 % |- =
S 60% [ - 60 % |- -
[7;] L - L H
3 40% | 4 40% | |
o I - F
20% = 20% =
0% | 0% |
Sl,D SZ‘D SD‘lSl‘l SLD SZ‘D SD‘l Sl‘l
Protected Unprotected sssssse Looped

Fig. 2: Basic LFA performance on mesh topologies 7. LFA-
LFCs provide significant more coverage for link failures but
cause many loops for node failures.

into three categories: star topologies T’s, ring topologies T'r,
and mesh topologies T;. Table I provides an overview of the
selected networks. We omit T in our analysis due to the lack
of alternate neighbors.

D. Flow Analysis for LFAs without Loop Detection

We evaluate the percentage of protected, unprotected, and
looped flows for various types of LFAs and for various failures
sets. As LFAs can protect significantly fewer flows in ring
topologies than in mesh topologies, we conduct our study
separately for mesh and ring topologies.

Figure 2 shows the average protection in mesh topologies
Ty for LFA-LFCs and LFA-DSCs. For single link failures,
LFA-LFCs protect approximately 68.1% which is 2.3 times
as effective compared to LFA-DSCs that only protect about
29.5%.

LFA-LFCs cause loops for the other failure scenario sets.
There is a similar protection ratio in S%° but LFA-LFCs cause
loops for approximately 1.2% of the traffic. For S%! and S*-1,
a significant number of loops occur. 29.2% of the traffic loops
in single node failure scenarios and 19.1% in S':'. LFA-DSCs
protect a similar amount of traffic but cause no loops in these
scenarios.

Figure 3 shows the average coverage for ring topologies
Tpr. The coverage of LFAs is clearly reduced for all failure
scenarios for LFA-LFCs. For single link failures, 23.4% less
traffic is protected which corresponds to 44.7%. The protection
for double link failures is reduced from 67.2% to 59.1%. Note
that, the number of caused loops is generally reduced. This is
especially true for S%! where the amount of loops is reduced
by 21.2% to 8%. We observe a reduction by 14.4% to 4.7%
for S™!. We explain this behavior due to the fact that the
overall number of available LFAs is significantly smaller in



LFC DSC

80 % L %%_ 80%—- % % _

£ 609% L - LR _ 50%_. . . _
w L - L tote! -
E W% L - 0% [ 55 o
o - - P b
20% - 20% - -

0 % ! 0 % !

Sl,U SZ,U SD’lSl’l Sl,D SZ,D SU,l Sl,l
Protected Unprotected ssssssz Looped m—

Fig. 3: Protection of LFAs in ring topologies Tr. LFA-
LFCs protect significantly less traffic but causes fewer loops.
LFA-DSCs provide similar performance compared to mesh
topologies.

NPC in Ty NPCin Ty

S 60% [ - 60% |- -
w L = L =
3 40% | 4 40% | |
o + - + -
20% = 20% =

0% | 0% ]

Sl,[) SZ,D SD’lSl’l Sl,D SZ,D SD,l Sl,l
Protected Unprotected sssssse Looped

Fig. 4: Node protecting LFAs do not cause loops for single link
or node failures but the protection is reduced. When multiple
failures (529, S1:1) occur, less than 0.5% of the traffic loops.

ring structures. Note that LFA-DSCs perform very similarly
in mesh topologies and ring topologies.

The protection for node-protecting LFAs is shown in Fig-
ure 4. For all topologies, we observe that loops are signifi-
cantly reduced compared to LFA-LFCs: there are no loops for
single link or node failures and only a minimum amount of
traffic (< 0.5%) loops for multiple failures. The protection
is only slightly reduced for ring topologies. However, the
protection for single and double link failures is reduced to
40% by approximately 28.9% and 27%, respectively.

E. Flow Analysis for LFAs with Loop Detection

With loop detection, all LFA-LFCs can be used for fast
reroute because potential loops can be detected and prevented
by dropping packets. In this section, we evaluate the perfor-
mance of LFAs with loop detection when unique IDs can be
assigned per node to record redirecting nodes which prevents
any erroneously detected loops. The results for LFA-IDs are
shown in Figure 5 .

The protection against single link failures is equivalent
to simple LFA-LFCs with corresponds to 68.1% in mesh
and 44.7% in ring topologies. LFA-IDs prevent all loops
for all network scenarios which can also be achieved with
LFA-DSCs. However, LFA-IDs provide significantly more

IDin Ty IDinTg

80%—-%-%-- % 4 80 % | g% g_

c-:.i/ 60 % | - . . . _ 60 % - R . _
w L - L

o + - F -

20 % - - 20% |- -

0 % ! 0% !

Sl,l) SZ,D SD’lSl’l Sl,U SZ,U SU,l Sl,l
Protected Unprotected ssssss: Looped mm—

Fig. 5: Loop-detecting LFAs avoid any loops in mesh and ring
topologies. Coverage against single link failures is equivalent
to LFA-LFCs but is increased for node or multiple failures.

Tm Tr
100 % - ! ! A 100% | | [
g I : K roo : : .
> 80 % ; B 809% |- : ; b
§ 60 % | : 60 % | T T =
=] r i F .
%’ 40% A0 % |- | -
Q rod F i
S 20% [ 20% |- I =
o F E L B
0% H B I 4 0% ]
gl0g20g01gll gl0 g20 g0.1 gl.1
DSC =5 Sbhits mmmmm 32 bits
3 bits =3 16 bits 64 bits

Fig. 6: Protected traffic in large mesh and ring networks for
LFA-DSCs and LFA-IDs with varying bit lengths. Bit lengths
of 8 or 16 are sufficient and protect comparable to optimal ID
lengths in large networks.

coverage. We observe an improvement of approximately 36%
— 38% for single and double link failures, 13.6% for single
node failures, and 20% for single link and node failures in
mesh topologies. There is less improvement in ring topologies
which correspond to about 6.5% — 14.2% more coverage in
the different scenarios.

FE. Impact of Number of Bits Available for ID Encoding

In this section we discuss the impact of the bit length for
the ID encoding. The number of available bits for the ID can
be a limiting performance factor in large networks. If there are
more nodes than available IDs, some nodes share the same ID.
If packets are redirected over a LFA-ID and traverse a node
with the same ID, the packet is discarded although there is no
microloop.

Therefore, we analyze the impact of the bit length on
networks that consists of 50 or more nodes. There are 14
mesh and 11 ring networks of the required size in 7T, and
Tr. We compare LFA-DSCs and LFA-IDs with varying bit
lengths. The percentage of protected flows is illustrated in
Figure 6. We observe significantly more protected flows for
LFA-IDs compared to LFA-DSCs even for short bit lengths.
LFA-IDs protect 12.4% — 29.2% more traffic for single link
failures than basic LFAs. Very short bit lengths lead to clearly



less protection than LFA-IDs with long bit lengths, i.e., a bit
length of 64 protects 1.4 times as much traffic as with a bit
length of 3. Bit length 8 leads to 51% and bit length 16 to
54.6% protection. The difference of bit lengths from 16 to 64
is negligible.

In ring topologies we observe the same basic trend as
for mesh topologies. However, the differences between LFA-
DSCs and LFA-IDs are generally less significant which can
be explained by the reduced availability of LFAs in ring
structures.

VI. CONCLUSION AND FUTURE WORK

We proposed loop-free alternates (LFAs) as fast reroute
algorithm for OpenFlow-based SDN. LFAs are simple and
require no additional forwarding entries but have the draw-
back that they mostly cannot protect all traffic and some of
them cause microloops in case of node failures or multiple
failures. Renouncing on such LFAs reduces the protection
coverage even further. To maximize protection coverage, we
have suggested loop detection for LFAs and proposed how to
implement it in OpenFlow in such a way that only a single
additional flow entry is needed per switch. Each node requires
an ID which can be encoded in the packet header to signal
the failure location and each ID is encoded as a single bit in
the bit string. Thus, large networks require large bit strings for
loop detection. As this is not likely to scale, we suggested to
share IDs among nodes to provide a fixed length label for the
implementation.

We evaluated the percentage of traffic that a set of LFAs can
protect, or cannot protect, or for which they cause microloops.
We studied different types of LFAs and different types of
network failures on multiple mesh and ring topologies. If all
LFAs are used for protection, about 30% of node failures lead
to extra loops in mesh networks. Allowing only those LFAs
that cannot cause loops in case of node failures, reduces the
protected traffic to only 40% for single link failures. With
loop detection, all LFAs can be used so that 70% of the
traffic can be protected in that case. This example shows
the effectiveness of the proposed loop detection for LFAs in
OpenFlow networks.

When IDs are shared, some nodes erroneously detect loops
and drop traffic. This can happen only in case of node failures
and multiple failures. Our evaluation showed that a visible
amount of traffic is dropped in these cases if the bit string for
the ID is 3 bits long, but bit string lengths of 16 and more
bits lead to hardly any erroneous packet drops.

Loop detection just helps to prevent loops for LFAs, but
it cannot protect traffic for which no LFAs exist. Therefore,
LFAs with loop detection should be complemented with an
additional mechanism to reach 100% protection in OpenFlow
networks. They are known to achieve this goal for unit routing
link costs, e.g., a network that is not optimized, but their
implementation in OpenFlow is still to be done and requires
more state than normal LFAs. We currently pursue this idea
to provide fast protection for 100% of the traffic in OpenFlow
networks with a minimum number of additional flow entries.

We will further investigate the use of LFAs for Open-
Flow networks. We will integrate remote LFAs (rLFAs) in
OpenFlow-based SDN which can protect 100% traffic for
single link failures when the network is configured with unit
link costs.We will enable the loop-detecting concept for rLFAs
and investigate its protection with regard to different failure
scenarios. Finally, we want to enhance rLLFAs to protect against
all single link failures with introducing a minimum amount of
additional forwarding entries.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communications
Review, vol. 38, no. 2, pp. 69-74, 2008.

[2] W. Braun and M. Menth, “Software-Defined Networking Using
OpenFlow: Protocols, Applications and Architectural Design Choices,”
Future Internet, vol. 6, no. 2, pp. 302-336, 2014. [Online]. Available:
http://www.mdpi.com/1999-5903/6/2/302

, “Wildcard Compression of Inter-Domain Routing Tables for
OpenFlow-Based Software-Defined Networking,” in European Work-
shop on Software Defined Networks (EWSDN), Sep. 2014, pp. 25-30.

[4] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“OpenFlow: Meeting Carrier-Grade Recovery Requirements,” Computer
Communications, 2012.

[51 J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and
P. Skoldstrom, “Scalable Fault Management for OpenFlow,” in IEEE
International Conference on Communications (ICC), 2012, pp. 6606—
6610.

[6] N.L. van Adrichem, B. J. van Asten, and F. A. Kuipers, “Fast Recovery
in Software-Defined Networks,” in European Workshop on Software
Defined Networks (EWSDN), Sep. 2014, pp. 61-66.

[71 R. M. Ramos, M. Martinello, and C. E. Rothenberg, “SlickFlow:
Resilient Source Routing in Data Center Networks Unlocked by Open-
Flow,” in IEEE Conference on Local Computer Networks (LCN), Oct.
2013.

[8] A. Atlas and A. Zinin, “RFC5286: Basic Specification for IP Fast
Reroute: Loop-Free Alternates ,” Sep. 2008.

[9] S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So, “Remote LFA

FRR,” http://tools.ietf.org/html/draft-rtgwg-remote-lfa, May 2013.

L. Csikor and G. Retvari, “IP Fast Reroute with Remote Loop-Free

Alternates: the Unit Link Cost Case,” in IEEE International Workshop

on Reliable Networks Design and Modeling (RNDM), 2012.

M. Menth and W. Braun, “Performance Comparison of Not-Via Ad-

dresses and Maximally Redundant Trees (MRTSs),” in IFIP/IEEE Inter-

national Symposium on Integrated Network Management (IM), Ghent,

Belgium, Apr. 2013.

R. Martin, M. Menth, M. Hartmann, T. Cicic, and A. Kvalbein, “Loop-

Free Alternates and Not-Via Addresses: A Proper Combination for IP

Fast Reroute?” Computer Networks, vol. 54, no. 8, pp. 1300 — 1315,

Jun. 2010.

P. Pan, G. Swallow, and A. Atlas, “RFC4090: Fast Reroute Extensions

to RSVP-TE for LSP Tunnels,” May 2005.

M. Pioro, A. Tomaszewski, C. Zukowski, D. Hock, M. Hartmann, and

M. Menth, “Optimized IP-Based vs. Explicit Paths for One-to-One

Backup in MPLS Fast Reroute,” in International Telecommunication

Network Strategy and Planning Symposium (Networks), Warsaw, Poland,

Sep. 2010.

C. R. Meiners, A. X. Liu, and E. Torng, “Bit Weaving: A Non-prefix

Approach to Compressing Packet Classifiers in TCAMs,” IEEE/ACM

Transactions on Networking, vol. 20, no. 2, pp. 488-500, Apr. 2012.

OpenFlow Switch Consortium and others, “Openflow switch

specification version 1.1.0,” 2011. [Online]. Available:

http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,

“The Internet Topology Zoo,” IEEE Journal on Selected Areas in

Communications, vol. 29, no. 9, pp. 1765 —1775, Oct. 2011.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]



