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Abstract—Cooperative Awareness Messages (CAMs) regularly
distribute state information about vehicles in Vehicular Ad-
hoc Networks (VANETs). Hardware modules in series vehicles
have limited processing capabilities so that only a subset of
received CAMs can be processed which may be chosen by a
relevance estimation mechanism (REM). In this work, we review
several REMs that differ in complexity. We compare them using
various approaches in different road scenarios. The results show
that more complex REMs provide similar results in simple
road scenarios but clearly improved results for demanding road
scenarios.

I. INTRODUCTION

In the oncoming years Vehicular Ad-Hoc Networks
(VANETs) are expected to be one of the innovations with
the biggest impact towards improved driving safety, more
economic driving and smoother traffic [1]. The basis of this
system is a derivation of the 802.11 family of standards
called 802.11p [2]. It has been optimized for a connectionless
data transmission to enable minimum latencies in a dynamic
environment. The Cooperative Awareness Message (CAM) is
one of several standardized message formats on the application
layer [3], [4]. CAMs are transmitted frequently up to 10
times per second by all participating vehicles and contain
basic information about the sender’s current state. Each vehicle
can maintain an internal map of its environment and support
various applications by receiving CAMs from surrounding
vehicles.

After decades of research and standardization, VANETs
have evolved to a state in which the deployment into series
vehicles is imminent [5], [6]. The car manufacturers face
new challenges in the development for the mass market.
One of these challenges is the processing of all received
messages. In a recent study we have shown that depending
on the local vehicle density, movement patterns, penetration
rate of VANET technology and road topology, high rates of
messages may be received [7], [8]. Increased message rates
can induce a high processing load on the application layer.
For example, each message may be stored in an internal
database, fused with other sensor data, and map-matched for
precise positioning to realize sophisticated applications. To
fulfill industrial requirements regarding cost, robustness and
stability, the overall system has to be designed to deal with
these message rates. To that end, we proposed to filter the

most relevant messages and introduced REMs of different
complexity in [9], [10].

Additionally, REMs have been proposed to enable different
types of intelligent broadcasting algorithms [11], [12] and
in-network data aggregation concepts [13]. The basic idea
is to handle highly relevant information in a preferred way
while information of low relevance is discarded or merged
into aggregates.

As REMs differ in complexity but series implementations
should be efficient, the benefit of more complex REMs must
be quantified to decide whether a simple or more complex
REM should be chosen in practice. To that end, we develop
an observed relevance of a vehicle for a receiver, which is
based on its actual trace over time, and use it as ground
truth to compare the quality of REMs. We further suggest
several approaches to visualize and quantify the outcome of
this comparison. The message orders induced by different
REMs can be diagrammed to identify the effects of each
mechanism. The rank correlation measures differences of the
message orders in a scalar value. In addition we quantify the
fraction of erroneously filtered messages. These methods are
applied to simulated traffic data and the results are discussed.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview on proposed REMs. In Section III
the simulation environment is introduced. In Section IV,
the comparative methods are defined and the results for the
simulated traffic are discussed. Section V concludes and gives
prospects on future work.

II. RELEVANCE ESTIMATION MECHANISMS

The determination of the relevance of a message depends
on available information, processing capabilities, and the de-
finition of relevance. A message’s relevance regarding crash
avoidance applications differs from the relevance regarding
parking space allocation. A number of REMs have been pro-
posed for message routing and forwarding in future VANETs.
Most of them use spatio-temporal approaches, combining
location and time information with weight factors to construct
an overall relevance function [12], [14], [11].

In the following sections we review a set of REMs. The
used parameter values are given in Table I.

c©IEEE, 82nd IEEE Vehicular Technology Conference (VTC Fall), Boston, September 2015



Parameter Value Parameter Value
dmin 10 m α 0.015
γ 0.3821 ∆dmax 1000 m
tmax 10 s β 0.15

∆tmax 10 s

TABLE I
PARAMETERS USED FOR THE REMS.

A. Distance-based Relevance Estimation

A commonly proposed relevance mechanism is the Eu-
clidean distance of sending and receiving vehicle at the time
of the message transmission as a relevance value [15]. This
approach does not take the movement of both vehicles into
account. We call it distanceRE:

Rdistance =
1

max(dmin, d(t0))
, (1)

where dmin is the direct vicinity of the receiving vehicle
and d(t0) is the Euclidean distance of sending and receiving
vehicle at the message transmission time t0.

B. Movement-based Relevance Estimation

For crash avoidance applications the relevance of a CAM
corresponds to the current and future distance of the sending
and receiving vehicles. Our proposal for a general relevance
estimation formula is

Rgeneral = max
t0≤t≤tmax

(
1

max(dmin, d(t))
· 1

( 1
s + t)γ

)
, (2)

where d(t) is the distance between sending and receiving
vehicle at time t (unit s) and γ is a time penalty coefficient [9].
To limit the prediction time, tmax should be set to a reasonable
time range. The distance function d(t) predicts the future
distance of sending and receiving vehicle based on their speed
and heading information at time t0.

1) Static Movement Extrapolation: One assumption for the
distance prediction is that both vehicles move with constant
speed and heading given at t0 [9]. We call this approach
staticRE in the remainder of this work as it assumes static
movement.

2) Dynamic Movement Extrapolation: The assumption of
static movement ignores the fact that vehicles often change
their speed and heading. Therefore, this assumption may
lead to relevance estimation values which differ significantly
from the corresponding observed relevance values. In such a
situation it might happen that messages will be discarded even
if their real relevance is high enough.

To eliminate this shortcoming, we proposed an extended
distance function in [10]. In this concept, the movement
is assumed to be dynamic in a way that the relevance is
maximized. To this end, we assume the sending vehicle to
move towards the receiving vehicle. This approach is called
dynamicRE in the following.

C. Encounter Probability

The encounter probability approach, created for the dissemi-
nation of parking space information, also assumes static move-
ment extrapolation to predict the shortest distance ∆d between

(a) TAPASCologne scenario. (b) Rural curve scenario.

Fig. 1. Simulated road scenarios.

a receiving vehicle and a remote entity [11]. Additionally the
time ∆t when ∆d is reached is taken into account:

EP =
1

α · min (∆d,∆dmax) + β · min (∆t,∆tmax) + 1
. (3)

∆d and ∆t are combined with weights α and β, and are lim-
ited to ∆dmax and ∆tmax. We call this approach encounterRE.

III. SIMULATION ENVIRONMENT

VANET simulations usually cover the three domains traffic,
channel/communication and application simulation [16]. We
describe these modules in the following sections.

A. Traffic Simulation
Position and movement of vehicles are fundamental input

variables for the analysis of VANETs. We use the traffic
simulation tool SUMO due to its efficient implementation [17].
Its configuration requires three steps: 1) select a road map
section; 2) define vehicle types; 3) define vehicle sources and
sinks.

We configured two different traffic scenarios to compare the
REMs in general traffic as well as in an application-dependent
scenario. The simulation scenario TAPASCologne defines a
whole day’s traffic for the German city of Cologne [18]. This
scenario allows for the collection of statistics for day-to-day
traffic. The second scenario is an example for an application-
specific scenario. The underlying road map is a wide curve,
representing rural situations for applications like oncoming
traffic collision avoidance [19]. Both scenarios are depicted
in Figure 1.

B. Channel Simulation
We use a statistical channel model which we derived in [7]

to simulate the message transmission. This approach allows
for an efficient implementation. It also eliminates a huge set
of parameters compared to discrete-event network simulators.
To simplify the application of this statistical channel model
we assume line-of-sight between senders and receivers.

C. Application Simulation
On the application layer the sending vehicle triggers CAMs

according to its current movement pattern [3]. On the receiving
side, the REMs are implemented. In addition the collection of
data for the statistics is deployed here.



IV. COMPARISON OF MESSAGE ORDERS

In this section we first introduce the observed relevance
value as ground truth. Then, we provide methods to illustrate
and quantify the differences between message orders induced
by the ground truth and the considered REMs. Finally, we
discuss our results.

A. Observed Relevance Values as Ground Truth

We define the observed relevance value to be the maximum
value calculated by Equation (2), using the real distance of
sending and receiving vehicle for discrete time steps between
t0 and t0 + tmax by taking the real movement of those two
vehicles into account. This allows us to compare the estimated
relevance value calculated at t0 with the observed relevance
value determined in the time interval [t0, t0 + tmax].

We assume that the observed relevance values based on
the real vehicle traces reflect the real relevance of CAMs in
practice. The REMs make assumptions about vehicle traces
which causes that their relevance values for a CAMs may differ
from corresponding observed relevance values. Therefore, we
use the observed relevance values based on Equation (2) as
ground truth for comparison. The outcome of the comparison
depends on the definition of the ground truth and may be
adapted for other applications.

B. Message Order Comparison

To compare the effects of different REMs, we sort all
messages by their observed and estimated relevance values.
This yields the message orders τo and τe, respectively. τo(i)
and τe(i) are the ranks of the ith message. The message orders
are normalized to the range [0, 1].

In Figures 2(a)–2(c) we plotted the message orders for the
TAPASCologne scenario. We omit the figures for the curve
scenario due to the lack of space. The dashed black 45◦

line indicates the points where the rank induced by both
estimation and observation are the same. Points below that
line correspond to messages which were ranked erroneously
too high, points above that line correspond to messages which
were ranked too low.

Figure 2(a) shows the results for the distance-based rel-
evance estimation. We observe that most messages have a
correct ranking while a certain amount of messages are ranked
too high (values lie in the upper left part). This is in accordance
with how this mechanism works. If two vehicles approach each
other after the message transmission, the estimated relevance
is too low. If they move apart, the observed relevance equals
the estimated relevance.

In Figure 2(b) there is a shift towards too low ranks because
of the position prediction. We assume vehicular movement
changes to be nearly identically distributed, so the effects
of overestimation and underestimation are similar. This is
expressed by the graph.

Figure 2(c) shows the results for the dynamic movement
approach. We observe that the set of too low ranks decreases to
less deviating values. In contrast, the number of overestimated
relevance values is higher. That corresponds to this approach’s

Mechanism Kendall’s τ rank corre-
lation coefficient
TAPASCologne Curve

distanceRE 0.966 0.627
staticRE 0.989 0.962
dynamicRE 0.975 0.982
encounterRE 0.893 0.908

TABLE II
MESSAGE RANK CORRELATIONS.

concept which assumes worst-case movement changes towards
higher relevance values.

For the encounter probability approach, Figure 2(d) shows
that this mechanism yields a broad area of values. Apparently
this mechanism tends to underestimate values. Other parameter
sets lead to similar effects. This approach’s concept obviously
does not fit to the chosen ground truth.

The results show that using this graphical representation
of message orders the effects of REMs can be analyzed and
undesirable phenomena can be detected.

C. Message Rank Correlation

To quantify the similarity between message orders induced
by observed and estimated relevance values, we propose to
use Kendall’s τ rank correlation coefficient as metric [20].
Kendall’s τ can be determined for tuples (τe(i), τo(i)) of each
message i by calculating

τ = 2 ·
nconcordant pairs − ndiscordant pairs

n · (n− 1)
,

where nconcordant pairs is the number of all concordant pairs,
i.e., all pairs of tuples (τe(r), τo(r)), (τe(s), τo(s)) where the
relative order is the same (τe(r) > τe(s), τo(r) > τo(s)) and
ndiscordant pairs is the number of all discordant pairs, i.e., all pairs
of tuples where the relative order is different (τe(r) < τe(s),
τo(r) > τo(s)).

Table II lists the results for the TAPASCologne and curve
scenarios. The encounter probability approach yields values
of around 0.9. For the TAPASCologne scenario, the distance-
based relevance estimation yields a high rank correlation co-
efficient of 0.966. The static-movement-based approach leads
to an even better result near to the optimum value. In contrast,
the dynamic relevance estimation results in between.

The curve scenario yields a bad performance for the
distance-based approach, while the dynamic movement ap-
proach and the static movement approach switch places.
Obviously the dynamic movement approach performs better
in this scenario.

We conclude that Kendall’s τ rank correlation coefficient
can be used for the comparison of REMs in different scenarios
using scalar values. However, for a deeper analysis of the
causes leading to these values, the graphical representation
from Section IV-B gives more information.

D. Erroneously Discarded Messages

When messages are filtered by their relevance values, a
certain amount of messages may be discarded because the
relevance estimation was not precise enough. We aim for a
comparative method for this phenomenon in this section.



(a) Distance-based relevance estimation. (b) Relevance estimation based on static movement approach.

(c) Relevance estimation based on dynamic movement approach. (d) Encounter probability approach.
Fig. 2. Graphical representation of the message orders τe and τo induced by estimated and observed relevance values for the TAPASCologne scenario. The
graphs show 1% of all data to avoid visual cluttering.

The message processing capabilities of VANET systems
may differ significantly. Therefore, our approach does not aim
for an analysis of a specific message processing rate but rather
uses a relative representation, which we call the message pro-
cessing fraction pprocessed messages. The absolute rate of received
messages corresponds to the system design and environmental
assumptions [8], [10]. We compare pprocessed messages to the
fraction of erroneously discarded messages perroneously discarded.

We use an example for clarification. Let the current rate of
received messages in a VANET be 500 messages per second.
A single system’s processing capabilities allow only for a pro-
cessing rate of 100 messages per second, so pprocessed messages =
100
500 = 0.2 holds. Let the fraction of erroneously discarded
messages perroneously discarded be 30%. This means that 30 out
of 100 processed messages per second are being filtered
erroneously in this situation.

Figure 3(a) shows the results for the TAPASCologne sce-
nario. We observe a steep increase for a low message pro-

cessing fraction. The relevance estimation based on static
movement reaches a maximum of perroneously discarded ≈ 18% for
pprocessed messages ≈ 3%. This means that 18% of the messages
did pass the filter erroneously while the same number of
messages was discarded erroneously. We also observe that the
relevance estimation based on dynamic movement performs
similarly to the distance-based and encounter probability ap-
proaches which reach almost perroneously discarded = 35%.

The situation is completely different for the curve scenario
in Figure 3(b). The distance-based approach performs very
badly, resulting in a perroneously discarded of partially over 45%.
The static movement-based approach reaches almost 10% for a
message processing fraction of approximately 35%. In contrast
to the TAPASCologne scenario, the dynamic movement-based
approach yields the lowest perroneously discarded values with a
maximum of around 2%. We notice in this plot that low
message processing fractions can also have low fractions of
erroneously discarded messages. These results confirm the



(a) TAPASCologne scenario.

(b) Curve scenario.

Fig. 3. Erroneously discarded messages for both scenarios.

observation from the above sections. The performance of
REMs has to be evaluated for a variety of scenarios, which
correspond to the implemented applications.

V. CONCLUSION AND FUTURE WORK

Relevance estimation mechanisms (REMs) are important for
the selection of Cooperative Awareness Messages in VANETs.
In this work we compared the quality of their results with
regard to a ground truth that we defined on the basis of real
vehicle traces. Both the ground truth and a REM provide
relevance values for CAMs and induce an order on them.
We compared these orders by illustrating their difference in
a diagram and condensing it to a scalar value. Furthermore,
we quantified the fraction of erroneously discarded CAMs, if
only a certain percentage of most important CAMs can be
processed.

We found that the simple static relevance estimation pro-
vides good results in a large city scenario, but when looking
at a specifically demanding curve scenario, the more complex
dynamic relevance estimation outperforms competitor REMs.

Future work includes the impact of actual hardware modules
with limited processing capacity. Simulated traffic data can be
replaced by data from real road traffic, e.g. by utilizing data

from field tests like simTD [21]. The definition of the ground
truth may be improved and adapted for specific applications,
the same holds for REMs. Finally, the impact of discarded
CAMs on applications has to be examined.
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