
c©2016 ITC. Personal use of this material is permitted. Permission from ITC must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Performance Analysis of CoDel and PIE for
Saturated TCP Sources

Fabian Schwarzkopf, Sebastian Veith, Michael Menth,
Chair of Communication Networks (KN), University of Tuebingen, Sand 13, 72076 Tuebingen, Germany

Abstract—In the recent years, the bufferbloat phenomenon was
observed which is mainly due to oversized unmanaged buffers
in the Internet. This triggered a new discussion of active queue
management (AQM) algorithms in the IETF. “Controlled Delay”
(CoDel) and “Proportional Integral controller Enhanced” (PIE)
are considered as an alternative to “Random Early Detection”
(RED). Their intention is both to take advantage of large buffers
for occasional bursts and to limit queueing delays most of the
time. Moreover, they are able to cope with varying bandwidth.

In this paper, we study the performance of CoDel, PIE, and
CoDel-ACT, which is an effective modification of CoDel that leads
to better performance than CoDel in our studies. We experiment
with saturated TCP sources and a fixed-bandwidth bottleneck
link and focus on the delay-limiting phase of the algorithms. We
investigate the impact of configuration parameters and traffic
load on link utilization and queueing delay. We study the timely
evolution of queuing delays and drop patterns, and point out
significant differences among the algorithms. In particular, we
show that CoDel’s drop behavior changes over time and may
lead to underutilization.

I. INTRODUCTION

Active queue management (AQM) mechanisms for the In-
ternet have been discussed since the early ’90s [1] and Random
Early Detection (RED) [2] has been proposed as a standard [3].
Although implemented in many devices, network operators
hesitate to turn RED on because it requires careful adjustment
to the specific network environment. In 2009 excessive packet
delay was observed in wireless networks [4] due to oversized
buffers and persistently full queues. Two years later, this
phenomenon was referred to as bufferbloat [5]. It underlined
the importance of managing buffers. As the community felt
that RED is not sufficient to control queues, the IETF working
group “Active Queue Management and Packet Scheduling”
(aqm)1 was founded in 2013 and has adopted two major AQM
algorithms for potential standardization. “Controlled Delay”
(CoDel) [6] which was originally proposed in 2012 [7] and
“Proportional Integral controller Enhanced” (PIE) [8] which
was originally published in 2013 [9]. Both algorithms have the
benefit that they cope with varying bandwidth as they rather
control delay than queue size. They achieve that goal with
two different strategies. CoDel monitors the actual queueing
delay of dequeued packets; if the delay is continuously above
a certain threshold for a given interval, CoDel drops packets

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/2-1. The authors alone are responsible for
the content of this paper.

1https://datatracker.ietf.org/wg/aqm/history/

with excess delay on dequeue. PIE first measures the departure
rate on the bottleneck link and predicts the queuing delay.
Then, a target delay, the estimated delay, and its recent changes
contribute to the calculation of a packet loss probability based
on which PIE possibly drops packets on enqueue. Thus, both
approaches are significantly different. We also consider a
variant of CoDel that modifies the growth of CoDel’s internal
count value as well as the time to wait before dropping mode
starts. We refer to this variant by CoDel-ACT (CoDel-adapted-
count-and-time).

If AQMs are very aggressive, the utilization of a potential
bottleneck link may suffer. Thus, there is a tradeoff between
low queuing delay and high resource utilization. In this paper,
we investigate the three AQM algorithms CoDel, CoDel-ACT,
and PIE. We illustrate an initial burst-allowing phase and a
succeeding delay-limiting phase in the presence of saturated
TCP flows. We investigate the impact of the algorithms and
their configuration parameters on queuing delay and utilization
for the delay-limiting phase. A time-dependent analysis of
the AQM algorithms reveals significant differences among
their drop patterns and explains the observed phenomena. The
findings contribute to a deeper understanding of the algorithms
that are currently under standardization in IETF.

The rest of the paper is structured as follows. Section II
reviews the AQM algorithms under study. Section III describes
the simulation setup and discusses simulation results, giving
statistical evidence and visual insights about the performance
behavior and differences of CoDel, CoDel-ACT, and PIE.
Section IV reviews related work, and Section V summarizes
most important findings of our work and draws conclusions.

II. ALGORITHMS UNDER STUDY

A. CoDel

For our simulations we implemented the C++-like pseu-
docode that is given for CoDel in [6]. CoDel equips packets on
enqueue with a timestamp so that it can calculate their queuing
time on dequeue. The procedure dodeque() dequeues a
packet and returns a pointer to it (r.p) as well as a boolean
r.ok_to_drop which is true if the queueing time has
continuously exceeded the delay threshold target for at least
interval time. The parameters target and interval
are recommended to be set to 5 ms and 100 ms, respectively,
and in particular independently of the networking scenario.
As CoDel has no other parameters, it can be used without
parameter adaptation. The actual logic of CoDel is given in
Listing 1 which is performed whenever a packet is dequeued.

International Teletraffic Congress (ITC), Würzburg, Germany, September 2016



CoDel uses some state variables. The boolean dropping
indicates whether CoDel may drop packets if two additional
conditions are also met. To drop a packet, its ok_to_drop
must be true, otherwise CoDel leaves its dropping mode.
CoDel controls its drop frequency by ensuring that the next
packet is not dropped before time next_drop. The time
between successive values of next_drop depends on the
persistence of the observed congestion which is tracked by
the integer count. As the count variable becomes large
if the queueing delay exceeds target for long time, the
time between successive values of next_drop becomes short
which increases the drop rate.

Listing 1. CoDel’s dequeue algorithm.

Packet* CoDelQueue::deque() {
double now = clock(); // current time
dodequeResult r = dodeque();
if (dropping) {

if (!r.ok_to_drop) {
dropping = false;

}
while (now >= drop_next && dropping){
drop(r.p);
r = dodeque();
if (!r.ok_to_drop) {

dropping = false;
} else {

count = count + 1;
drop_next = drop_next + interval/sqrt(count);

}
}

} else if (r.ok_to_drop) {
drop(r.p);
r = dodeque();
dropping = true;
if (count > 2 && now-drop_next < 8*interval) { // *

count = count - 2; // *
} else { // *

count = 1; // *
} // *
drop_next = now + interval/sqrt(count);

}
return (r.p);

}

As CoDel’s algorithm in Listing 1 is not our contribution,
we leave its study to the reader. However, we discuss some
observation that the reader should understand about the algo-
rithm. CoDel enters its dropping mode only if the queuing
delay exceeds target for more than interval time, and
stays in dropping mode until a dequeued packet’s delay falls
below target. After packet loss, CoDel determines the
next next_drop time, and after subsequent packet loss
within a dropping phase, CoDel increments count. This
leads to increasing drop rates until queueing delay decreases
and CoDel leaves its dropping mode. If CoDel reenters the
dropping mode, the count value is reset to 1 only if the last
dropping phase was sufficiently long ago, otherwise count
is set to an only slightly smaller value than before. Note that
CoDel can drop several consecutive packets at once because
the next value of next_drop is determined relative to the
last value of next_drop and not relative to the current time
unless CoDel just entered the dropping mode.

B. CoDel-ACT

During our studies we discovered obvious deficiencies of
CoDel and tried to repair them. A research of existing CoDel

variants lead to an algorithm with suitable properties that
K. Nichols has suggested in 2012. However, its benefits were
not quantified at that time so that it was no longer considered.

CoDel-ACT is a modification of CoDel that addresses
the fact that CoDel waits a fixed time interval before
reentering the dropping mode and that CoDel sets the new
value of count to count-2 so that count can continu-
ously grow on persistent congestion. To prevent this behavior,
K. Nichols suggested two modifications2. The first modifica-
tion requires that the queuing delay exceeds target for at
least interval / sqrt(count) time instead of a fixed
duration of interval before the procedure dodeque sets
r.ok_to_drop to true for a packet so that CoDel switches
to dropping mode. The second modification decays count
when entering the dropping mode using the following code:

Listing 2. CoDel-ACT’s modification to CoDel’s dequeue algorithm address-
ing the *-marked lines in Listing 1.
if (count > 2 && now-drop_next < 8*interval) {

count = count - 2;
if (count > 126) {
count = 0.9844 * (count + 2);

}
} else {
count = 1;

}

The decay applies only if count is greater than 126. If so,
the function scales count with the decay parameter 126

128 ≈
0.9844 rather than just subtracting a fixed value of 2. Thus, this
modification reduces count more strongly than the current
IETF variant in [6] when entering the dropping mode.

C. PIE

We implemented PIE according to the appendix of the
IETF draft in [8] but corrected some obvious glitches in the
pseudocode. The changes comprise the reset of the accumu-
lated drop probability at each drop as well as prevention of a
negative drop probability p by limiting its range to [0,1].

PIE updates its drop probability p every t_update time
(16 ms by default) using the currently observed queueing
delay Dq and the control parameter qdelay_ref (16 ms by
default). On arrival, a packet is dropped with drop probability p
unless the queue is obviously not congested which is expressed
in [8] through appropriate conditions, e.g., if the current
queuing delay is less than qdelay_ref/2. We first explain
how the current queueing delay Dq is measured and then how
p is adapted.

The current delay Dq is estimated by Little’s law which
requires the departure rate. The latter is obtained by the
following concurrent process. If the queue contains more
than TDQ bytes and is currently not in a measurement state,
then a new departure rate measurement starts at time ti.
The measurement stops at time ti+1 when TDQ bytes are
dequeued. The current dequeue time ∆ is calculated according
to Equation (1) and smoothed to obtain the average dequeue
time ∆avg according to Equation (2). Then, the departure rate
R is computed like in Equation (3) which allows to estimate

2The source code of these modifications is available at http://pollere.net/
Codel.html, http://pollere.net/Txtdocs/codel.cc, last modified July 24, 2012.

2



the current queueing delay Dq using Equation (4), given the
queue length Lq . If the queue contains less than TDQ bytes,
the rate R cannot be updated and the last value of R is reused
for the estimation of the current queuing delay Dq .

∆ = ti+1 − ti (1)

∆avg =
1

4
·∆ +

3

4
·∆avg (2)

R = TDQ/∆avg (3)
Dq = Lq/R (4)

The drop probability p is periodically updated similarly as
in Equations (5) and (6) using the current queueing delay Dq ,
the previous queueing delay Dprev

q , and the control parameter
qdelay_ref. The equations in [8] include in addition a case
analysis of p that we omit for brevity. Equation (5) uses the
two factors α and β for which values are recommended in
[8]. While CoDel updates its state variable count only in
dropping mode, PIE updates its state variable p also when
the estimated queueing delay Dq is below the reference value
qdelay_ref.

p= p+α · (Dq−qdelay_ref)+β · (Dq −Dprev
q ) (5)

Dprev
q =Dq (6)

The draft [8] extended the original algorithm in [9] with
some modifications that were proposed by CableLabs simu-
lations. The modifications comprise (1) a de-randomization
of drop events and (2) an on/off mechanism of the algorithm.
The first modification accumulates the current drop probability
p at every packet enqueue using the variable accu_prob.
As long as accu_prob is < 0.85, no packets are dropped.
If accu_prob becomes > 8.5, then the packet is dropped
in any case. If accu_prob ranges between these limits,
drops are randomly performed with probability p. Every drop
resets accu_prob. The second modification describes the
inactivation of PIE with a reset of PIE’s internal variables in
the absence of congestion. By default, PIE is reactivated if the
queue length exceeds one third of the total size. The second
modification is irrelevant for our simulations because PIE is
never deactivated due to lasting congestion in our experiments.

III. RESULTS

In this section we first describe our simulation setup. Then
we study queuing delays with CoDel, CoDel-ACT, and PIE
and illustrate that these algorithms exhibit in the presence
of saturated TCP sources first a burst-allowing phase and
then a delay-limiting phase. In this work we focus on the
delay-limiting phase. We first provide evidence about queueing
delay distributions depending on the traffic load. Then we
study the impact of configuration parameters on queuing
delay and utilization of the bottleneck link. As we observe
a non-monotone dependency of CoDel’s utilization on the
traffic load, we perform a time-dependent analysis to better
understand the performance behavior of the AQM algorithms.
To that end, we investigate how state variables, drop rates, drop
patterns, and queuing delays evolve during the delay-limiting
phase.

A. Simulator and Network Topology

All simulations were performed with INET 2.4.0 [10] in
the OMNet++ network simulation framework 4.4.1 [11]. We
used the Network Simulation Cradle 0.5.3 [12] to simulate
TCP sources, which facilitates the application of real world
network stacks from Linux kernels in simulation programs.
All simulations are conducted with Linux kernel 2.6.29.

We simulate clients that are connected to a server over a
high-bandwidth link with 1 Gb/s and a shared bottleneck link
with 10 Mb/s, which results in a one-sided dumbbell topology.
We configured a one-way propagation delay of 0.1 ms for the
fast access link and 5 ms for the bottleneck link, which yields
a minimum round-trip time (RTT) of about 10 ms.

We choose a buffer size for the bottleneck link of 250 KB,
i.e., two times the bandwidth delay product at an RTT of
100 ms. We set the buffer so large to study the AQM
mechanics with negligible amount of tail drops. We investigate
the presented AQM algorithms for control of the queue on
the bottleneck link with varying traffic load in terms of 1, 4,
16, and 64 saturated TCP NewReno flows. The flows were
randomly started within the first second of a simulation run.

If not mentioned differently, we configure CoDel and
PIE with their recommended default parameters: target=
5 ms, interval=100 ms, qdelay_ref=16 ms, and
t_update=16 ms. We configure CoDel-ACT with the same
parameters as CoDel. While we provide only figures for 10 ms
RTT and TCP NewReno in this paper, we run the same
experiments with TCP CUBIC and/or 100 ms RTT. Their
results are qualitatively the same, but differ in quantity.

B. Illustration of Burst-Allowing and Delay-Limiting Phase

Figure 1 illustrates the queuing delay of consecutive packets
at the beginning of a simulation for 1, 4, 16, and 64 concurrent
TCP flows. We observe a large spike in the first 1 s – 5 s,
but then queuing delay is limited to low values. This is
exactly what AQMs should do: they allow that infrequent large
bursts can use the available buffer, but they avoid a standing
queue under persistent load. We denote these phases as burst-
allowing and delay-limiting phase. They can be observed with
saturated TCP sources.

With PIE, we experience initially large delays and the
duration of such phases are almost independent of the traffic
load. It is limited to 1.5 s in all cases. With CoDel, initially
large delays increase with traffic load and so does their
duration. As a result, CoDel leads to the same queuing delay
as PIE for 64 TCP flows, but the duration of large delays is
almost 5 s long. CoDel-ACT reveals identical queuing delays
as CoDel as their behaviors do not differ within the first few
drop phases. From then on, a separate curve for CoDel-ACT
is visible in the figure. At the beginning of the simulation,
CoDel’s and CoDel-ACT’s count value is small so that the
minimum time between drops interval/sqrt(count)
is rather large and initial bursts are cut down only slowly. As
CoDel’s and CoDel-ACT’s drop rate scales with interval,
increasing interval also extends the initial phase with large
experienced delays. PIE obviously increases its drop rate more

3



0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

1 F
low

4 F
low

s
16 F

low
s

64 F
low

s

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Q
ue

ui
ng

 d
el

ay
 (

m
s)

CoDel CoDel−ACT PIE

Fig. 1. Time-dependent queuing delay with CoDel, CoDel-ACT, and PIE.

quickly and stops phases of increased delays earlier than
CoDel while allowing the use of the same buffer size. The
figure also shows that the simulated process is not stationary
before 5 s. Therefore, we use only data gathered after 10 s
when considering averages, distributions, or quantiles.

C. Queuing Delays in the Delay-Limiting Phase

While Figure 1 illustrates the initial queuing delay, Figure 2
quantifies the long-term queuing behavior of the considered
AQM algorithms for 16 concurrent TCP flows as complemen-
tary distribution function (CDF) of the queuing delay. With
CoDel, about 4% of the packets experience no queuing delay.
This is a hint that the bottleneck link may be underutilized.
The queuing delay of most other packets is almost equally
distributed between 0 ms and 20 ms. With CoDel-ACT, there
are fewer packets with no queuing delay, but most packets
have a queuing delay less than 10 ms. Moreover, CoDel-
ACT centers the queuing delay between 4 ms and 8 ms like
a Normal distribution. The same holds for PIE but with a
larger mean and variance. Although PIE leads mostly to larger
queuing delays than CoDel for 16 flows, the probability for
large queuing delays is higher for CoDel than for PIE. As
PIE drops on enqueue and the bandwidth is constant in our
simulation, the queue length distribution is very similar to
the queuing delay distribution. This is different with CoDel
and CoDel-ACT as they perform drop on dequeue. Therefore,
observed queue lengths are larger which effects that their
CDFs have a bias of about 2 – 3 packets to larger values
compared to the CDF of the corresponding queuing delay.

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35
Queuing delay t (ms)

P
(D

≤
t)

CoDel

CoDel−ACT

PIE

Fig. 2. CDF of the queuing delay for CoDel, CoDel-ACT, and PIE for 16
TCP flows.

Table I shows the mean and the 99% quantile (Q99%) of the
queueing delay for different traffic load and for a minimum
RTT of 10 ms and 100 ms. In all cases, the mean queueing
delay of CoDel and CoDel-ACT increases with more flows
while the one of PIE is about 16 ms. The 99% quantiles are
significantly larger. While CoDel leads to smaller queueing
delay than PIE at low traffic load, it surpasses the one of PIE
for many flows. In contrast, CoDel-ACT leads to the least
queueing delay in all cases.

TABLE I
MEAN AND 99% QUANTILE OF MEASURED PACKET DELAYS (MS).

no. TCP CoDel CoDel-ACT PIE
flows mean Q99% mean Q99% mean Q99%

RTT=10 ms
1 4.54 9.22 4.54 9.22 16.13 32.14
4 8.79 17.67 6.60 11.63 15.79 24.89

16 14.19 35.75 7.16 15.25 15.95 28.51
64 19.94 44.19 10.36 26.10 15.97 33.30

RTT=100 ms
1 1.16 6.03 1.15 6.03 8.28 28.93
4 3.46 10.85 3.49 10.85 16.49 38.57

16 6.47 19.28 4.74 12.06 15.75 31.35
64 15.84 36.17 8.63 21.71 15.93 33.76

PIE is configured with qdelay_ref=16 ms which re-
sults in fact in about 16 ms average queuing delay for all
investigated load levels. Therefore, one can think of PIE’s
qdelay_ref as a parameter that leads to a certain aver-
age queue length. In contrast, CoDel and CoDel-ACT are
configured with target=5 ms, but the observed average
queuing delays are clearly larger for most load levels. Thus,
CoDel’s target provides only relative control of the average
queueing delay.

D. Impact of AQM Control Parameters

CoDel, CoDel-ACT, and PIE have two control parameters
each: a delay threshold and a time scale parameter. In the fol-
lowing, we investigate their impact on average queuing delay
and utilization in the delay-limiting phase for various traffic
load. The presented results are mean values over 20 runs.

1) Impact of Delay Thresholds: CoDel and CoDel-ACT
use target to decide whether a packet’s delay is considered
as too long so that the algorithms switch to dropping mode
after some time and possibly discard such packets. PIE uses
qdelay_ref to increase or decrease its drop probability p
and a fraction of qdelay_ref helps PIE to prevent losses

4



CoDel CoDel−ACT PIE

0

5

10

15

20

25

30

35

1 5 10 16 20 1 5 10 16 20 1 5 10 16 20
Target / qdelay_ref (ms)

Q
ue

ui
ng

 d
el

ay
 (

m
s)

(a) Average queuing delay.

CoDel CoDel−ACT PIE

90.0%

92.5%

95.0%

97.5%

100.0%

1 5 10 16 20 1 5 10 16 20 1 5 10 16 20
Target / qdelay_ref (ms)

U
til

iz
at

io
n 

(%
)

1 Flow

4 Flows

8 Flows

16 Flows

64 Flows

(b) Bottleneck utilization.

Fig. 3. Impact of the delay thresholds target for CoDel and CoDel-ACT and qdelay_ref for PIE. For CoDel’s interval and for PIE’s t_update
parameter default values are chosen of 100 ms and 16 ms, respectively. A black dashed line shows the configured delay thresholds target and qdelay_ref.

in the absence of congestion. We investigate the impact of
these delay thresholds during the delay-limiting phase for
various traffic load while using the default time scale param-
eters interval=100 ms and t_update=16 ms for CoDel,
CoDel-ACT, and PIE, respectively.

Figure 3a shows the average queuing delay for the three
AQM algorithms depending on the delay threshold. We ob-
serve that larger delay thresholds result in longer average
queuing delays for all algorithms. With CoDel, larger traffic
loads lead to larger average queuing delays that are mostly
larger than target. This shows again that target provides
only relative control on queuing delay. We observe similar
effects for CoDel-ACT, but the number of TCP flows has
less influence on the average queuing delay compared to
CoDel. In contrast, PIE is able to control the queuing delay
independently of the traffic load. The measured delay almost
equals the configured qdelay_ref. Moreover, small values
of qdelay_ref cause smaller queuing delays than CoDel’s
and CoDel-ACT’s target value in the presence of many TCP
flows. A target value of 5 ms for CoDel leads for 16 TCP
flows to about the same queuing delay as a qdelay_ref
value of 16 ms for PIE. Thus, the two recommended default
values lead to comparable results in this particular setting.

Figure 3b shows the utilization for the three AQM algo-
rithms. CoDel’s utilization is below 100% for small values of
target, and ranges between 95% – 100% for its default
parameter of 5 ms depending on the traffic load. CoDel-
ACT improves the utilization compared to CoDel while the
observed queuing delay is even shorter. The default parameter
target=5 ms leads to almost 100% utilization for most

traffic loads. Also PIE’s utilization suffers from a small
delay threshold, but the recommended qdelay_ref=16 ms
achieves 100% utilization for all investigated loads. A closer
look at CoDel’s utilization reveals that it is high for 1 and
64 TCP flows, but it is low for 4, 8, and 16 TCP flows. This
non-monotone order is non-intuitive, therefore, we investigate
and explain that issue further in Section III-E.

2) Impact of Time Scale Parameters: CoDel’s dynamics
scale with the time parameter interval. First, the drop-
ping mode is triggered after interval time if all packets
experienced too long delay within that time. Second, the
minimum time within a drop phase is a dynamic fraction
of interval. And third, the duration for which CoDel
remembers the count state parameter of the last drop phase
also depends on interval. PIE’s dynamics scale with
t_update because after that period PIE regularly adjusts its
drop probability. We investigate the impact of the time scale
parameters during the delay-limiting phase for various traffic
load while using the default delay thresholds target=5 ms
and qdelay_ref=16 ms, respectively. We report findings
but omit figures due to space limitations.

CoDel’s and CoDel-ACT’s queuing delay increases linearly
with interval and clearly depends on traffic load. For 4
or more flows, CoDel-ACT leads to about half the queuing
delay compared to CoDel. PIE causes a queuing delay of
16 ms for t_update=16 ms and all investigated traffic loads.
This value is lower for smaller values of t_update but only
slightly larger for larger values up to t_update=150 ms. In
addition, we also observe some dependence on the traffic load
in these ranges.

5



The utilization of CoDel heavily depends on interval. It
is between 98.5% and 100% for small values of interval
around 25 ms, takes a minimum of 95% – 100% at
interval=100 ms, and values between 99% and 100% at
interval=200 ms. Again, 1 and 64 TCP flows lead to higher
utilization than 4, 8, and 16 TCP flows. CoDel-ACT shows
increasing utilization for increasing values of interval.
A single TCP flow always leads to lower utilization than
other traffic loads. At interval=125 ms or larger, 100%
utilization is reached for all traffic loads. PIE achieves 100%
utilization for t_update=16 ms or larger. Smaller values
of t_update cause lower utilizations which also depend on
traffic load.

E. Time-Dependent Analysis of the Delay Limiting Phase

In the remainder of this work, we study the time-dependent
behavior of the AQM algorithms.We first point out that their
state variables, drop rates, drop patterns, and queuing delays
behave differently and depend on traffic load. We show how
loss patterns and queuing delays even change over time for
CoDel which also affects utilization.

0

10000

20000

30000

0

500

1000

1500

0.0

0.1

0.2

0.3

0.4

0.5

C
oD

el
C

oD
el−

A
C

T
P

IE

0 10 20 30 40 50 60 70 80 90 100
Time (s)

P
ro

ba
bi

lit
y 

p 
/ C

ou
nt

1 Flow

4 Flows

16 Flows

64 Flows

Fig. 4. Evolution of state variables over time.

1) State Variables: CoDel’s and CoDel-ACT’s state vari-
able count and as well as PIE’s drop probability p mem-
orize the recently experienced congestion to some degree.
We investigate how they evolve over time. Figure 4 shows
a time series of CoDel’s and CoDel-ACT’s count variable
as well as PIE’s drop probability p for different numbers of
concurrent TCP flows. The data is taken from the first 100 s
of a single simulation run. CoDel’s count variable increases
linearly over time with a slope depending on the traffic load.
An exception is the transmission of a single TCP flow for
which count remains very low. The boundless growth of the
count variable is due to CoDel’s algorithm and the saturated
TCP sources. The count variable increases during a drop

phase with every consecutive drop. When CoDel leaves its
dropping mode, the rate increase of several saturated TCP
sources is large so that the queue length rises quickly again. As
a result, the next dropping mode is triggered before a duration
of 8*interval has past since the last next_drop instant.
Therefore, CoDel does not reset its count variable to 1 so
that count can increase without bounds. An exception is the
experiment with a single TCP flow where it obviously takes
longer until CoDel switches to dropping mode again.

CoDel-ACT’s count variable behaves differently over
time. Like with CoDel, it stays low for the transmission of a
single TCP flow. However, it oscillates around values 50, 300,
and 1300 for higher traffic load and does not continuously
grow. On the one hand, CoDel-ACT returns to dropping mode
more quickly than CoDel because the time during which
increased queuing delays must be observed before CoDel-ACT
switches to dropping mode is interval/sqrt(count)
instead of interval so that CoDel-ACT does not reset
count to 1, either. On the other hand, CoDel-ACT sets
count to 0.9844 ·count at the beginning of a new dropping
mode, which is lower than count-2 for count values larger
than 128. That feature effects that CoDel-ACT’s count value
is bounded in contrast to the one of CoDel. Average count
values depend on the traffic load because the number of TCP
flows governs the overall rate increase of the traffic aggregate
when connections are in congestion avoidance phase.

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

C
oD

el
C

oD
el−

A
C

T
P

IE

0 10 20 30 40 50 60 70 80 90 100
Time (s)

D
ro

p 
ra

te
 (

pk
t/s

)

1 Flow 4 Flows 16 Flows 64 Flows

Fig. 5. Time-dependent drop rates.

PIE’s drop probability p oscillates around values that depend
on the traffic load. In the presence of a single flow, the drop
probability is almost zero. At the beginning of a congestion
phase, the drop probability p reaches its operating point faster
than count values do and reveals an initial overshoot before
returning to a stationary level.

2) Drop Rates: Figure 5 visualizes time-dependent drop
rates for the three AQM algorithms. We calculated them

6



by applying the time-exponentially weighted moving average
(TEWMA) [13] with a memory of 500 ms to individual packet
losses. All drop rates oscillate around values that depend on
the traffic load. For 64 flows, CoDel takes about 20 s until
its stationary drop rate is reached. CoDel-ACT reaches that
level already after 6 s and PIE does so within 2 s. The
slow increase of drop rates for CoDel and CoDel-ACT is
caused by the rather slow increase of the count value after
simulation start. PIE produces the least drop rates, followed by
CoDel-ACT and CoDel with the largest drop rates. The broad
curve of CoDel’s drop rate reveals oscillations with higher
amplitude than those of CoDel-ACT and PIE. This is due to
CoDel’s extreme alternating drop and non-drop phases which
are illustrated next.

3) Loss Patterns and Queuing Delays: The plots in Figure 6
show the time series of queuing delays of consecutive packets
as a curve and packet losses as vertical lines. Intervals of 1 s
duration after 5 s, 50 s, and 500 s simulation time are provided.
As CoDel-ACT’s and PIE’s results after 5 s and 500 s almost
equal those after 50 s, we omit them in the figure.

a) Comparison of Loss Patterns and Queueing Delays
after 50 ms: Figure 6b compares loss patterns and delays

of the three algorithms after 50 s. In case of a single flow,
they all drop only a single packet after observation of too
long delays. The packet loss causes a decrease in traffic rate
and experienced queuing delay shortly after. The time between
losses is the same for CoDel and CoDel-ACT, but it is almost
3 times longer for PIE. As a consequence, PIE loses fewer
packets and achieves higher resource utilization than CoDel
variants (see Figure 3b). PIE drops packets on enqueue while
CoDel and CoDel-ACT drop packets on dequeue. This leads
to a larger interval between packet loss and delay reduction
for PIE in the figure.

We now consider multiple concurrent TCP flows. CoDel
exhibits drop phases alternating with non-drop phases. The
drop phases are rather short and end when the queuing delay
of dequeued packets falls below target. CoDel drains a
long queue within 10 ms – 60 ms by discarding packets on
dequeue. The high density of consecutive vertical lines reveals
very high drop rates within drop phases. They are enabled
by the very large count values of about 2500, 6000, and
16250 after 50 s persistent traffic load of 4, 16, and 64 flows.
They lead to a minimum time between consecutive packet
losses of 2.0 ms, 1.3 ms, and 0.8 ms. As the transmission of a

1 Flow 4 Flows 16 Flows 64 Flows

0
10
20
30
40
50

C
oD

el

5.1 5.3 5.5 5.7 5.9 5.1 5.3 5.5 5.7 5.9 5.1 5.3 5.5 5.7 5.9 5.1 5.3 5.5 5.7 5.9
Time (s)

D
el

ay
 (

m
s)

(a) Simulation interval 5 – 6 s.

1 Flow 4 Flows 16 Flows 64 Flows

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

C
oD

el
C

oD
el−

A
C

T
P

IE

50.1 50.3 50.5 50.7 50.9 50.1 50.3 50.5 50.7 50.9 50.1 50.3 50.5 50.7 50.9 50.1 50.3 50.5 50.7 50.9
Time (s)

Q
ue

ui
ng

 d
el

ay
 (

m
s)

(b) Simulation interval 50 – 51 s.

1 Flow 4 Flows 16 Flows 64 Flows

0
10
20
30
40
50

C
oD

el

500.1 500.3 500.5 500.7 500.9 500.1 500.3 500.5 500.7 500.9 500.1 500.3 500.5 500.7 500.9 500.1 500.3 500.5 500.7 500.9
Time (s)

D
el

ay
 (

m
s)

(c) Simulation interval 500 – 501 s.
Fig. 6. Time-dependent queuing delays on a shared bottleneck link with 10 Mb/s; packet losses are marked as vertical lines.

7



packet takes only 1.2056 ms for the bottleneck bandwidth of
10 Mb/s, even two packets may be dropped at once with 64
flows so that one vertical line possibly represent two packet
drops. CoDel causes long non-drop phases by waiting at least
interval time after increased queuing delays are observed
in a non-drop phase before dropping mode is triggered again.
Therefore, non-drop phases are at least interval time long.
The non-drop phases are longer for a few TCP flows than
for many TCP flows because the overall rate needs more
time to recover and to anew drive the queue into congestion.
CoDel-ACT also exhibits drop phases alternating with non-
drop phases. However, drop phases show lower drop rates
compared to CoDel, and non-drop phases are shorter. The
time between drops in a drop phase is larger than with CoDel
because CoDel-ACT’s count variable is around 50, 300, and
1300 for 4, 16, and 64 flows, which leads to at least 14.1 ms,
5.8 ms, and 2.8 ms between packet drops. Therefore, CoDel-
ACT takes longer to sufficiently reduce the queue length which
extends the drop phase compared to CoDel. The shorter non-
drop phases are facilitated by the fact that CoDel-ACT must
wait only interval/sqrt(count) time after observing
extended queuing delays before it switches to dropping mode.
They are around 18.3 ms, 5.8 ms, and 2.8 ms long, i.e.,
some non-drop phases are very short and can be recognized
only by reduced queuing delay. Thus, CoDel-ACT restarts
dropping very fast and leads to shorter delays than CoDel.
The time between drop phases decreases with increasing
number of TCP flows for the same reason as with CoDel. PIE
drops packets continuously over time and almost randomly.
However, slightly decreased and increased queuing delays
correlate with slightly decreased and increased drop rates.

A comparison of resulting queuing delays shows signifi-
cant differences among the algorithms. With CoDel-ACT, the
queuing delay oscillates with moderate amplitude around a
short value, with PIE with a moderate amplitude around a
larger value, and with CoDel with a large amplitude around a
load-dependent value. This explains why CoDel leads to mean
queuing delays that are mostly smaller than those of PIE in
Table I, but may cause significantly larger quantiles.

A closer analysis of CoDel’s queuing times reveals that with
a single flow, the queuing delay is always positive. With 4 and
16 flows, the queuing delay of some packets is zero, and with
64 flows, queuing delay is again mostly positive. Zero queuing
delays may indicate an idle link, which causes underutilization.
This explains the non-monotone dependence of the utilization
on the traffic load observed in Figure 3b. The reason why
a single flow avoids zero queuing delays in contrast to 4 or
16 flows is that CoDel’s count does not rise for a single
flow so that consecutive drops are spaced sufficiently far apart.
Therefore, CoDel drops only a single packet before leaving the
dropping mode instead of draining the queue.

b) CoDel’s Varying Drop Behavior over Time: Fig-
ures 6a–6c reveal that CoDel’s drop behavior changes over
time: drop phases are long after 5 s, shorter after 50 s, and
very short after 500 s. This is due to increasing count values
which cause larger drop rates. We consider 16 flows. Figure 6a

shows that queuing delays after 5 s simulation time become
short at the end of a drop phase but stay above zero. Thus, the
queue never empties and the bottleneck link is well utilized.
Drop rates after 5 s are low enough that the overall traffic
rate is reduced carefully so that it matches approximately
the link rate at the end of the drop phase. As a result, the
queue is not fully drained and underutilization does not occur.
Figure 6b shows that queuing delays after 50 s sometimes fall
down to zero at the end of a drop phase. This means that the
queue is sometimes empty and the link may be idle, leading to
underutilization. Drop rates are larger than after 5 s so that the
overall traffic rate is reduced too much and falls below the link
rate at the end of the drop phase. The remaining queue content
may not suffice to fully fill the link until the traffic rate turns up
again, and cause the link to run idle for short time. Figure 6c
illustrates that drop phases after 500 s stop with larger queuing
delays than after 50 s and that zero queuing delays are mostly
avoided. This leads to improved utilization after 500 s. After
500 s simulation time, drop rates are so large that multiple
packets are dropped at once and the queue is drained faster
than a single RTT so that the traffic rate is not yet reduced at
the end of the drop phase. This avoids underutilization for two
reasons. First, when CoDel stops dropping, the queue holds
more packets with a queueing time less than target than
after 50 s. Thus, there is more remaining data. Second, the
queue increases again after the end of a drop phase until the
effect of reduced traffic rates becomes visible at the bottleneck
link. It causes the queuing delay to first slightly increase and
then decrease before increasing again.

4) Evolution of Utilization and Queuing Delay: We studied
the evolution of time-dependent utilization averaged over 1 s
in the presence of 16 TCP flows and report results without
figures. PIE and CoDel-ACT achieve about 100% utilization
during the entire simulation. In contrast, CoDel’s utilization
starts with 100%, falls down to 95% after 30 s simulation,
and slowly increases to 99% after 500 s. We define the variant
CoDel-count-n which has count set to the constant value
n. CoDel-count-600 leads to almost 100% utilization, CoDel-
6000 to 95%, and CoDel-60000 to 99%. This confirms that
utilization of CoDel depends on count in a non-monotone
way and, therefore, changes over time if count increases
from small to large values.

IV. RELATED WORK
The bufferbloat phenomenon has been reported in [5]. While

some authors are rather doubtful about its prevalence and
impact [14], [15], bufferbloat has been demonstrated in cellular
networks [16]. The authors of [17] pointed out many sources
contributing to Internet latency and countermeasures.

In [7], CoDel was suggested to control queueing delay
independently of buffer size, RTTs, bottleneck bandwidth, and
even under varying bottleneck bandwidth. A comparison with
RED was also provided. Similar results are reported in [18]
from an actual Linux testbed. AQMs may be combined with
scheduling mechanisms [19]. For instance, CoDel is mostly
recommended to be combined with stochastic fair queueing
(SFQ) to isolate flows against each other [20].

8



The authors of [21] compared the performance of CoDel
and RED using simulations and evaluated queueing delay and
throughput with different buffer sizes. They concluded that
RED is also able to control the queue at a reasonable length
but does not extend the transmission time of files because it
leads to fewer packet drops than CoDel. Interactions between
CoDel and LEDBAT have been studied in [22]. The authors
of [23] have presented a software-defined implementation of
RED and CoDel in an FPGA to support 10 Gb/s links.

In [9], PIE was presented and it was shown that it is able
to control delay while maintaining high utilization during
different congestion levels. The work compared CoDel and
PIE, and showed that CoDel is not able to control queue delay
under heavy load. In [24], CableLabs simulated both CoDel
and PIE in DOCSIS cable modems. They demonstrated that
actively managed buffers reduce the queueing delay. Another
simulation of the DOCSIS cable modems showed that CoDel
has problems to adjust to a sudden change in bottleneck rate
under unresponsive loads [25]. Another comparison between
PIE and CoDel for DOCSIS is provided in [26].

In [27], the impact of the main parameters of CoDel and PIE
is analyzed. The authors compared CoDel, PIE, and Adaptive
RED (ARED) in a testbed environment at an RTT of 100 ms.
They used the originally published PIE algorithm which differs
from the newer one used in our work.

V. CONCLUSION

In this work we have investigated the utilization and queue-
ing delay of the three AQM algorithms CoDel, CoDel-ACT,
and PIE for saturated TCP flows and a bottleneck with constant
bitrate. We first illustrated the existence of a burst-allowing
phase and a delay-limiting phase in the presence of saturated
TCP sources. Then, we showed that the AQM algorithms lead
to different queuing delay and arrival rate distributions. While
PIE is able to keep the average queueing delay at its configured
qdelay_ref parameter, CoDel’s average queuing delay de-
pends both on its target parameter and the traffic load. We
investigated the impact of configuration parameters on average
queueing delay and utilization. CoDel-ACT leads to higher
utilization and less queueing than CoDel while PIE leads to
better utilization at the expense of increased queueing delay.
We performed a time-dependent analysis of the algorithms’
delay-limiting phase. We investigated how state variables
count and p, and drop rates evolve over time which revealed
a boundless growth of CoDel’s count variable for saturated
TCP sources. An analysis of drop patterns and queueing delays
showed significant differences in the operation of the three
algorithms. CoDel’s drop behavior changes over time due
to increasing count and leads to potential underutilization.
CoDel-ACT is designed to avoid such behavior and leads to
shorter queueing delays. PIE does not exhibit such behavior
by design.

Our work contributes to the understanding of novel AQM
algorithms currently discussed for standardization in IETF, and
potentially to their improvement. We revealed some disadvan-
tageous properties of CoDel compared to CoDel-ACT or PIE.

However, the experiments were limited to a single bottleneck
with constant bitrate of 10 Mb/s and saturated TCP flows. To
recommend one of the three AQM algorithms, further studies
are needed, in particular with different traffic models and
varying bandwidths.

REFERENCES

[1] R. Adams, “Active Queue Management: A Survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 15, no. 3, pp. 1425–1476, 2013.

[2] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, Aug. 1993.

[3] B. Braden et al., “RFC2309: Recommendations on Queue Management
and Congestion Avoidance in the Internet,” Apr. 1998.

[4] B. Turner, “Has AT&T Wireless data congestion been
self-inflicted?” http://blogs.broughturner.com/2009/10/
is-att-wireless-data-congestion-selfinflicted.html.

[5] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
ACM Queue, vol. 9, no. 11, Nov. 2011.

[6] K. Nichols et al., “Controlled Delay Active Queue Management,” draft-
ietf-aqm-codel-00, Oct. 2014.

[7] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, no. 5, May 2012.

[8] R. Pan et al., “PIE: A Lightweight Control Scheme To Address the
Bufferbloat Problem,” draft-ietf-aqm-pie-00, Oct. 2014.

[9] ——, “PIE: A Lightweight Control Scheme to Address the Bufferbloat
Problem,” in IEEE Workshop on High Performance Switching and
Routing (HPSR), 2013.

[10] A. Varga, “INET-2.4.0 released,” http://inet.omnetpp.org/, Jun. 2014.
[11] ——, “OMNeT++ 4.4.1 released,” http://www.omnetpp.org/, Oct. 2014.
[12] S. Wand, “Network Simulation Cradle,”

http://research.wand.net.nz/software/nsc.php, 2012.
[13] R. Martin and M. Menth, “Improving the Timeliness of Rate Measure-

ments,” in GI/ITG Conf. MMB, 2004.
[14] O. Hohlfeld et al., “BufferBloat: How Relevant? A QoE Perspective on

Buffer Sizing,” http://downloads.ohohlfeld.com/paper/bufferbloat-qoe-
tr.pdf, TU Berlin, Tech. Rep. 2012-11, Nov. 2012.

[15] M. Allman, “Comments on Bufferbloat,” ACM SIGCOMM Computer
Communications Review, vol. 43, no. 1, Jan. 2013.

[16] H. Jiang et al., “Understanding Bufferbloat in Cellular Networks,” in
Workshop on Cellular Networks: Operations, Challenges, and Future
Design (CellNet), Aug. 2012.

[17] B. Briscoe et al., “Reducing Internet Latency: A Survey of Techniques
and their Merits,” to appear in IEEE Communications Surveys &
Tutorials, 2016.

[18] T. Hoiland-Jorgensen, “Battling Bufferbloat – An Experimental Com-
parison of Four Approaches to Queue Management in Linux,” http:
//rudar.ruc.dk/handle/1800/9322, Roskilde Univ., Tech. Rep., Dec. 2012.

[19] F. Baker and R. Pan, “RFC7806: On Queuing, Marking, and Dropping,”
Apr. 2016.

[20] T. Hoeiland-Joergensen et al., “FlowQueue-Codel,”
http://tools.ietf.org/html/draft-ietf-aqm-fq-codel, Mar. 2016.

[21] N. Kuhn et al., “Revisiting Old Friends: Is CoDel Really Achieving
What RED Cannot?” in Capacity Sharing Workshop (CSWS), 2014.

[22] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. D. Taht, “Fighting the
Bufferbloat: on the Coexistence of AQM and Low Priority Congestion
Control,” in Workshop on Traffic Measurement and Analysis, 2013.

[23] A. Sivaraman et al., “No Silver Bullet: Extending SDN to the Data
Plane,” in ACM HotNets, Nov. 2013.

[24] G. White, “Active Queue Management in Docsis 3.X Cable
Modems,” http://www.cablelabs.com/wp-content/uploads/2014/06/
DOCSIS-AQM May2014.pdf, Cable Television Laboratories, Inc.,
Tech. Rep., May 2014.

[25] R. Pan et al., “QoE: As Easy As PIE,”
http://www.nctatechnicalpapers.com/Paper/2013/2013-qoe-as-easy-
as-pie, National Cable and Telecommunications Association, Inc., Tech.
Rep., 2013.

[26] J. Martin, G. Hong, and J. Westall, “Managing Fairness and Application
Performance with Active Queue Management in DOCSIS-based Cable,”
in Capacity Sharing Workshop (CSWS), 2014.

[27] N. Khademi et al., “The New AQM Kids on the Block: An Experimental
Evaluation of CoDel and PI,” in IEEE Global Internet Symposium, 2014.

9


