(©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

jLISP: An Open, Modular and Extensible
Java-Based LISP Implementation

Andreas Stockmayer®, Mark Schmidt*, Michael Menth*
* Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany

Abstract—LISP is a standardized overlay protocol imple-
menting the locator/identifier split for the Internet. Multiple
extensions exist, e.g., for NAT traversal, traffic engineering, etc.
Existing LISP implementations are mostly platform-specific, hard
to extend or they are closed source. In this work we present
a Java-based implementation for LISP which is open source,
modular, and features a plugin mechanism that enables simple
integration of new functionality. It provides behavior for LISP
nodes, infrastructure nodes, and various extensions, it is easily
portable, can be run on various operating systems and platforms,
in particular on Android smartphones. The demo illustrates
LISP-based communication including the extensions mentioned
above. In addition, the extensibility is demonstrated by a plugin
for a statistics application.

I. INTRODUCTION

The locator/identifier (Loc/ID) split separates the name of a
host, its identifier, from the address of its location, the locator.
The locator/identifier binding can be provided by a distributed
database, the mapping system, so that traffic to a specific node
can be tunneled or address-translated to its locator after lookup
of its identifier. Around 2006 this concept was suggested to
solve the problem of quickly increasing BGP [1] routing tables
in the Internet [2] and a working group in IETF was set
up to standardize the Locator/Identifier Separation Protocol
(LISP) [3]. LISP by itself cannot solve this scaling issue as
large-scale adoption is prerequisite. However, LISP provides
an overlay network which is attractive, e.g., for traffic engi-
neering (TE). LISP differentiates from other routing overlays
through its control plane which automatically maps locators to
identifiers, and the associated mapping system which supports
service-specific mapping. LISP may support software-defined
networking (SDN) [4], datacenter networking, service function
chaining (SFC), NAT traversal, mobile networking, and others.

There are several closed-source and open-source LISP
implementations. We started extending them to integrate novel
functionality but discovered that they rather focus on per-
formance than extensibility. Some of them are platform-
dependent, implement only a subset of standardized features,
or are no longer supported. As we feel the need for a LISP
software base for research purposes, we provide jLISP as an
open-source, easy to extend, and platform-independent LISP
implementation that also runs on smartphones. In this paper,
we give an introduction to LISP, review other implementations,
explain the functionality and software architecture of jLISP
and how new features can be integrated, and present a demo
that illustrates jLISP in different application scenarios.

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-1. The authors alone are responsible for
the content of this paper.

The rest of the paper is structured as follows: In Section II
we give a brief overview of the LISP protocol. Section III
reviews other LISP implementations. jLISP is presented in
Section IV and Section V presents the demo. Section VI
concludes this work.

II. LISP

The LISP protocol implements the Loc/ID split. Nodes
have Endpoint Identifiers (EID) as names and Routing Lo-
cators (RLOCs) as globally routable addresses. Within a LISP
domain, EIDs may be used for forwarding. Tunnel routers
(xTRs) [3] encapsulate LISP traffic to other LISP domains after
retrieval of RLOC/EID mappings from the mapping system. To
make EIDs of a LISP domain reachable over the Internet, the
xTR registers them at the mapping system. Figure 1 illustrates
communication with LISP. A source node with EID 70.0.0.1 in
LISP domain /0.0/16 sends a packet to a destination node with
EID 20.0.0.1 in LISP domain 20.0/16. The packet is forwarded
to its default gateway which is xXTR with RLOC 172.10.0.1.
The xTR sends a Map Request to the Map Resolver, the
interface of the mapping system, and receives a Map Reply
containing the RLOC 772.20.0.1 for EID 20.0.0.1. The xTR
encapsulates the packet with a LISP header containing control
information, a UDP header to port 4342, and IP header to
the destination RLOC. Upon reception of the packet, the
destination xTR strips these headers and forwards the packet
to the destination node.

The xTR can enable interworking with the non-LISP Inter-
net by address translation [S]. That means, it acts like a NAT
for traffic leaving the LISP domain for the classic Internet.
With this approach, a LISP domain is treated like a private
network. In contrast, proxy xXTRs (PxTR) make nodes in LISP
domains globally reachable via BGP.

A LISP Mobile Node (MN) [3] is a mobile device with an
EID and xTR functionality. If the MN becomes connected to
a host network, it registers that address as RLOC for its EID
at the mapping system to ensure global reachability.

LISP-TE allows forwarding LISP traffic over a sequence of
so-called re-encapsulating tunnel routers (RTRs). To that end,
the EID is mapped to the RLOC sequence of these RTRs.
Upon reception of a packet, the RTR decapsulates the packet,
looks up the mapping, and re-encapsulates the packet to the
next hop in the LISP overlay.

LISP NAT traversal [6] makes XTRs behind a NAT reach-
able in the Internet, which is especially useful for MNs. A
NAT traversal router (NTR) facilitates that function. If an xXTR
behind a NAT attempts to register at the mapping system, it
receives a response with a list of NTRs. It then registers at an



LISP Domain
10.0/16

EID: 10.0.0.1

Internet

10.0/16 : 172.10.0.1

20.0/16 : 172.20.0.1

LISP Domain
20.0/16

Fig. 1: Basic communication with LISP.

NTR. The NTR adds the RLOC of the xTR to its NAT table.
Furthermore, it registers the xXTR’s EIDs with its own RLOC
at the mapping system.

The LISP canonical address format (LCAF) enables more
advanced TE by extending mappings with context information.
E.g., the RLOC of an EID may depend on the specific service
or traffic class of the packet so that voice and data traffic is
tunneled by xTRs over different paths.

LISP is currently extended with features for security and
hybrid access, there are multiple use cases for the MN concept
in the context of datacenters and multihoming, and the LISP
control plane may be applied to other data planes.

III. RELATED WORK

OpenLISP [7] is an early open source implementation
whose data plane is implemented in the kernel of FreeBSD and
its control plane in the user space of FreeBSD and Linux. The
limitation of the data plane to FreeBSD [8] makes OpenLISP
hard to use. Code for the kernel stack is neither easy to read nor
a suitable base for fast prototyping of extensions. The control
plane code for Linux is written in C, also hard to read, and
documentation exists only for the usage of the program. Thus,
also the control plane is hard to extend.

Open Overlay Router [9] (OOR), the successor of lisp-
Mob [10], is an open source implementation that uses LISP
or VXLAN [11]/GRE [12] as an overlay for SDN. Its focus
is support for network function virtualization (NFV), e.g.,
by SFC, and integration with OpenDaylight [13]. OOR is
available for Linux, Android (only on rooted devices) and
OpenWRT. The extended feature set makes OOR attractive
for application, but bloats the code which is written in C. This
is an obstacle for developers who want to implement their own
features in the code base.

Lispers.net [14] is a Python implementation aiming to
implement the complete feature set of LISP. Additional non-
LISP-specific functions and behaviors are added which makes
lispers.net a general overlay controller that focuses on bleeding
edge LISP technology. As the source code of lispers.net is
proprietary, it cannot be used for own extensions.

There are several other proprietary LISP implementa-
tions. The implementations on Cisco routers and on AMV’s
FRITZ!Box home routers are most widely spread. Both can

be used to test LISP and to connect with the beta network.
However, they are not open source and cannot extended befor
OWN purposes.

IV. JLISP ARCHITECTURE

JLISP is an easily extensible and portable open source
implementation of LISP. It is implemented in Java and runs in
the user space. We chose Java as programming language for
platform independence. The code is object-oriented and mod-
ular which facilitates readability, reusability, and extensibility.
We describe the architecture of jLISP, comment on supported
features and a plugin mechanism, and report some performance
results.

A. Architecture

JLISP is split into three different, independent modules
which are realized as standalone Java packages. Figure 2
depicts these modules: the data plane, the control plane, and
general networking. They are used for the implementation of
xTRs, RTRs, NTRs, the mapping system, and in particular for
novel LISP-based applications.

Controlplane

Map Request
Map Reply
Map Register

IPv4 Packet

Dataplane

Dataplane
Header

UDP Packet

Network

Fig. 2: jLISP modules

The control plane module contains classes for all LISP con-
trol messages, e.g., Map-Register, Map-Request, etc., which
allow building and parsing control messages. A mapping
system implementation consists only this control plane module,
a datagram socket, and some additional logic.



The data plane module contains classes to encapsulate
payload with a LISP header and decapsulate it while extracting
header information. An RTR implementation leverages the
control plane, the data plane module, a datagram socket, and
some additional logic. An RTR receives LISP-encapsulated
traffic, reads one header field, performs Map Requests, and
sends LISP-encapsulated traffic to the next overlay hop.

The general networking module contains classes to build
and parse transport protocol headers as well as IPv4 and
IPv6 headers. he xTR uses this module for interpreting non-
LISP traffic to retrieve destination EIDs from IP packets.
LCAF implements conditional forwarding and requires Layer 4
information, e.g., port numbers which can be obtained from
packets with classes from this module.

A central feature of jLISP is the simple construction of
objects for control plane, data plane, or general networking
packets. They may be either constructed from parameters or
parsed from a byte stream of a packet yielding the packet
data. This serialization of packet objects into packet byte
streams and deserialization of packet byte streams into packet
objects enables a simple handling of packets for application
programmers without dealing with low-level programming.
This is a significant advantage compared to existing implemen-
tations and important for extensibility and rapid prototyping.
Therefore, this framework allows to write lightweight tools and
LISP applications with only little knowledge of the full source
code of jLISP. The control plane module is already used in our
practical networking course [15] to let students write a simple
variant of the LIG [16].

JjLISP is a user space program and does not require
modifications of the operating system. Therefore, jLISP can be
run on devices without special privileges and thereby avoids
some security concerns. Technically, jLISP provides a tun
device over which all raw IP traffic with EID source addresses
is forwarded to the xTR application. The xTR application
receives raw IP traffic from the tun device, encapsulates it, and
forwards it to a datagram socket,or receives encapsulated LISP
traffic from a datagram socket,decapsulates it, and forwards it
to the tun device. In fact, one datagram socket is used for
LISP data traffic and another for LISP control traffic. As a
potential modification, the tun interface may be swapped by
a tap interface which offers control of Layer 2 traffic in the
network. This facilitates, e.g., a simple extension of XTRs to
ARP proxies to connect remote LISP domains to one VPN.
The drawback is the need for parsing and constructing Layer 2
headers of the traffic which requires more computing effort.
This architectural base enables porting jLISP to any platform
that supports Java and offers a tun/tap driver or a VPN API
like Android which may be used as substitute for a tun/tap
device.

B. Features

JLISP is compatible with the LISP RFCs.. Based on the
presented modules, jLISP provides explicit programs for all
LISP components: xTRs, RTRs, NTRs, and the mapping
system.

The xTR component is split into an ingress tunnel router
and egress tunnel router (ITR/ETR). The ITR receives raw traf-
fic and LISP-encapsulates it before forwarding. The ETR re-

ceives LISP-encapsulated traffic and decapuslates it. The xXTR
may also re-encapsulate packets and provide RTR functionality
by calling the encapsulation routine after decapsulation instead
of forwarding the raw traffic.

A MN is built on the base of the xXTR. The xTR is equipped
with an EID on its LISP tun interface. This address is the
sole prefix this XTR is responsible for and the xTR registers
that EID with the mapping system whenever it receives a new
RLOC which is the address of the external network interface.

The mapping system uses hash maps to store register mes-
sages for EID prefixes. They are retrieved with an algorithm
for longest prefix match. Since the entire register message is
saved, this structure supports new LISP register formats by
design as the information is stored as opaque data. Therefore,
the mapping system can store both normal EID-to-RLOC
mappings and more complex EID-to-LISP-TE-path mappings
containing as list of RTRs, and return them on request. The
storage backend of the mapping system can be replaced by
another that provides a class with a store and request method
for mappings. Normally, the mapping system is filled with
Map Register messages from an xXTR. We also provided a non-
standardized interface to allow third-party controllers to fill
the mapping system with mappings and program a network.
This can be used for TE experiments and integration with
third-party controllers. Potential use cases are NFV and SFC
applications.

JLISP also provides an NTR which is a modified xXTR with
a NAT and some additional logic. We provide two components:
the one implementing the current Internet draft [6] and a
modified version. This modification reduces the computation
load on the NTR. In the current draft, the NTR interprets
the Message Register message from the registering node and
sends a new one to the mapping system. We proposed that a
registering nodes sends an encapsulated Map Register message
to the NTR, which decapsulates and forwards it to the mapping
system. Furthermore, our modification especially ensures that
communication behind a provider NAT still works if a flow
sends packets infrequently. To that end, the client sends empty
keep-alive messages to the NTR which prevents that the
connection between client and NTR is deleted from the NAT
table.

C. Plugins

JLISP offers a plugin mechanism to improve extensibility.
For control plane traffic, jLISP provides hooks to intercept
control messages before they are sent and after they are
received which allows plugins to modify them. For control
plane traffic, raw traffic may be intercepted before being
received by the ITR or sent by the ETR, and encapsulated
traffic before being sent by the ITR or received by the ETR.
This enables a developer with only little knowledge of jLISP
to intercept packets at any stage of the normal LISP pipeline.

D. Throughput and Load Measurements

We tested the implementation on commodity laptops on a
100 Mb/s LAN and could use the full bandwidth. The load
was handled by a single core of a mobile CPU, but jLISP is
able to spread it across up to 100 CPU cores if needed. This
is achieved with two thread pools that are filled with up to 50
worker threads to process incoming and outgoing traffic.



V. DEMO

The demonstration illustrates LISP communication be-
tween a MN behind a NAT and a node in a LISP domain
using jLISP components.

We use a semi-virtualized testbed which is visualized in
Figure 3. A testbed server hosts two LISP domains with nodes
and xTRs realized as virtual machines (VMs). It further hosts
a mapping system and an NTR. The MN runs on an Android
machine. An OpenWrt [17] router with integrated NAT is used
as access point (AP) and connects the smartphone with the
server.

Virtual Testbed Server

((cc l
| e—_
MN AP

Switch

Domain A

Domain B

Fig. 3: Testbed setup

To be able to use hardware-accelerated virtualization on the
Intel x86 platform used in the testbed server, some extensions
are needed as the architecture itself is not virtualizable. Intel
VT-x [18] enables basic hardware acceleration on that plat-
form. To actually use these hardware features, the hypervisor
that runs the VMs has to support them. We use KVM [19]
as hypervisor, which is part of the Linux kernel, with QEMU
[20] as virtualizer. The server itself is set up with an Ubuntu
15.10 [21] operating system. The VMs are managed with the
libvirt [22] framework as frontend. As a result, we run multiple
VMs per host with a performance close to a dedicated physical
machine. The connection between the VMs and the physical
interface of the testbed connected to the access point is realized
by an Open vSwitch [23]. The demo shows a MN exchanging
traffic with a node in one of the LISP domains. The MN
first attempts to register itself at the mapping system but does
not receive a Map Notify message confirming it registration.
Instead, the MN receives a notification that it is located behind
a NAT including a list of available NTRs. Then, the alternative
NAT traversal proposed in Section IV is applied. The MN
sends an encapsulated Map Register message to the NTR.
The NTR decapsulates it, adds an entry to its NAT table,
and forwards the Map Register to the mapping system. After
the MN receives a Map Notify from the mapping system,
it starts sending packets to the node in the LISP domain.
The first packet is sent to the NTR. The NTR faces a cache
miss, requests the RLOC for the destination EID from the
mapping system, and forwards the LISP-encapsulated packet
to the xXTR of the LISP domain. The xTR delivers the packet to
the destination. The destination responds, the packet is relayed
to the xXTR which also faces a cache miss, requests the RLOC
for the EID of the MN from the mapping system, receives the
RLOC of the NTR, and forwards the packet to the NTR. After
reception of the packet, the NTR consults its NAT table for
the MN’s EID, and forwards the packet to the MN.

We demonstrate the extensibility, we provide a simple
statistics plugin running on any node. It reports the number of

sent packets to the master node while packets are exchanged.
The master node aggregates and presents the data.

VI. CONCLUSION

We presented jLISP as a novel implementation of LISP
which excels by a highly extensible architecture (modularity,
object-orientation, plugin mechanism), and offers itself for
rapid prototyping. jLISP is sufficiently fast and offers parallel
processing if needed. It is platform-independent, runs in the
user space, and supports all features of the currently standard-
ized LISP protocol. The demo leverages jLISP and runs on
a semi-virtualized testbed. It illustrates how a Mobile Node
behind a NAT communicates with the help of NAT traversal
with a node in a LISP domain. The NAT traversal implements
an improvement of the current Internet draft. A simple statistics
application illustrates jLISP’s plugin mechanism.

REFERENCES

[11 Y. Rekhter, T. Li, and S. Hares, “RFC4271: A Border Gateway Protocol
4 (BGP-4),” Jan. 2006.

[2] M. Menth, M. Hartmann, D. Klein, and P. Tran-Gia, “Future Internet
Routing: Motivation and Design Issues,” it - Information Technology,
vol. 5, no. 6, Dec. 2008.

[3] D. Farinacci, V. Fuller, D. Meyer and D. Lewis, “RFC6830: The
Locator/ID Seperation Protocol (LISP),” Jan. 2013.

[4] A. Rodriguez-Natal, M. Portoles-Comeras, V. Ermagan, D. Lewis,
D. Farinacci, F. Maino, and A. Cabellos-Aparicio, “LISP: A Southbound
SDN Protocol?” vol. 53, no. 7, pp. 201-207, Jul. 2015.

[5] D.Lewis, D. Meyer, D.Farinacci and V. Fuller, “RFC6832: Interworking
between Locator/ID Seperation Protocol (LISP) and Non-LISP Sites,”
Jan. 2013.

[6] V. Ermagan, D. Farinacci, D. Lewis, J. Skriver, FMaino, C. White ,
“NAT traversal for LISP,” https://tools.ietf.org/html/draft-ermagan-lisp-
nat-traversal-10.

[7] Luigi Iannone, “The OpenLISP Project,” http://www.openlisp.org.

[8] The FreeBSD Team, “FreeBSD,” http://freebsd.org/.

[9] Barcelona Tech University,
http://www.openoverlayrouter.org/.

[10] ——, “LISPMob: LISP Mobile Node,” http://www.lispmob.org.

[11] M.Mahalingam, D.Dutt, K.Duda, P.Agarwal, L.Kreeger, T.Sridhar,
M.Bursell, C.Wright, “RFC 7348 Virtual eXtensible Local Area Net-
work (VXLAN): A Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks,” Aug. 2014.

[12] D.Farinacci, T.Li, S.Hanks, D.Meyer, P.Traina, “RFC2784 Generic
Routing Encapsulation (GRE),” Mar. 2000.

[13] The OpenDaylight
https://www.opendaylight.org/, 2011.

“Open Overlay Router,”

Team, “OpenDaylight,”
[14] D. Farinacci, “lispers.net,” http://www.lispers.net, 2014.

[15] M. Schmidt, A.Stockmayer, “Internet Lab MSc. Course University of
Tuebingen,” https://thallo.informatik.uni-tuebingen.de.

[16] D.Farinacci, D.Meyer, “RFC6835: The Locator/ID Seperation Protocol
Internet Groper (LIG),” Jan. 2013.

[17] OpenWrt team, “Openwrt,” https://openwrt.org/.

[18] Intel Corp, “Intel Virtualization Technology(VT-x),”
http://www.intel.com/content/www/us/en/virtualization/virtualization-
technology/intel-virtualization-technology.html, 2006.

[19] A. Kivity et al., “kvm: the Linux virtual machine monitor,” in Linux
Symposium, 2007.

[20] QEMU team, “QEMU 2.” http://wiki.qgemu.org/ChangeLog/2.0, 2014.

[21] Canonical Ltd, “Ubuntu 15.10 (Wily Werewolf),”
http://releases.ubuntu.com/15.10/, 2015.

[22] Red Hat, “libvirt: The Virtualization APL,” http://libvirt.org, 2012.
[23] Open vSwitch team, “Open vswitch,” http://openvswitch.org/.



	Introduction
	LISP
	Related Work
	jLISP architecture
	Architecture
	Features
	Plugins
	Throughput and Load Measurements

	Demo
	Conclusion
	References

