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Abstract—In Vehicular Ad-hoc Networks (VANETs) commu-
nication among vehicles enables new advanced driver assistance
systems. Cooperative Awareness Messages (CAMs) are so fre-
quently exchanged that deployable electronic control units will
not be powerful enough to process them all. Thus, most relevant
CAMs need to be selected for processing.

In this paper, we give an overview of relevance estimation
function (REFs) for CAMs that assign them a relevance value
based on metadata. We describe and evaluate an efficient message
buffer and selection mechanism for most relevant CAMs. It
efficiently decreases the relevance of buffered CAMs over time.
We evaluate the results of the mechanism with regard to selection
probability and message waiting time under realistic conditions.
Furthermore, we study the runtime of various REFs using a
prototypical implementation on a hardware evaluation platform.
The results show that the proposed algorithms are feasible
on close-to-production hardware as they quickly process most
relevant CAMs.

I. INTRODUCTION

After decades of research, standardization, and field testing,
Vehicular Ad-Hoc Networks (VANETs) are about to be de-
ployed in the years ahead [1], [2]. Based on this technology,
various applications with impact on driving safety, comfort,
and traffic efficiency can be realized [3]. The foundation is an
amendment of the 802.11 family of standards, called 802.11p
[4]. Each vehicle and roadside unit that participates in a
VANET broadcasts messages to its neighborhood. The Coop-
erative Awareness Message (CAM) is one of the standardized
message formats and transmitted by vehicles up to 10 times per
second [5], [6]. It contains status information about its sender
and allows the receivers to create and maintain a dynamic map
of their environment.

New challenges arise in the development of systems for
series vehicles. In contrast to field test and prototype vehicles,
the hardware has to meet strict requirements regarding cost,
robustness and size. However, we showed in a study that
depending on the road topology, vehicle density, movement
patterns and technology penetration rate, high rates of CAMs
may be received [7], [8]. This should be taken into account
for the design of the device processing the CAMs. We found
that one architectural key element for that device is the
filtering of relevant messages, which requires an efficient
function to estimate the relevance of all incoming messages.
We proposed such functions in [9], [10]. A comparison of our

and other relevance estimation functions (REFs) showed that
the quality of their results depends on the chosen scenarios
and applications [11].

In this paper, we propose an efficient message buffering and
selection system. Messages are buffered and the most relevant
message according to a given REF is chosen to be processed
next. If a new message arrives in the presence of a full buffer,
the message is dropped if it is less relevant than any other
message in the buffer; otherwise, it is accommodated and a
less relevant message is dropped from the buffer. Thereby, only
most relevant messages are processed. This simple approach is
complicated by the fact that message relevance changes over
time and messages may become obsolete through consecutive
messages from the same sender. We implemented this message
selection and buffering concept and the REFs on realistic
hardware. We measured the runtime performance of various
implemented REFs and analyzed relevance distributions and
waiting times of queued messages. To that end, we stressed
the hardware with realistic overload scenarios generated by
our simulation tool chain.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of proposed REFs. Section III
describes the message buffering and selection system. In Sec-
tion IV the evaluation environment is introduced. In Section V,
the REFs’ computation times are presented and Section VI
discusses performance results of the selection mechanism.
Section VII concludes this work.

II. RELEVANCE ESTIMATION FUNCTIONS

The computation of a CAM’s relevance on an electronic
control unit needs to satisfy multiple constraints: feasibility
with available hardware resources, consideration of available
information, and the interests of applications.

In the following, we present several REFs that are tailored
for safety applications where the distance between vehicles
plays an important role. Parameters recommended for these
REFs are compiled in Table I. Some of these REFs were orig-
inally intended for message routing and forwarding algorithms
[12], [13], [14].
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Parameter Value Parameter Value
dmin 10 m α 0.015
γ 0.3821 ∆dmax 1000 m
tmax 10 s β 0.15

∆tmax 10 s

TABLE I
RECOMMENDED PARAMETERS FOR VARIOUS REFS.

A. Distance-Based Relevance Estimation

In the literature a message’s relevance is often solely based
on the Euclidean distance d(trcv) between the sender and
receiver at the time of the message reception trcv [15]. We
call this approach distanceRE and compute the relevance by

Rdistance =
1

max(dmin, d(trcv))
, (1)

where the distance dmin defines the radius of the direct
vicinity of the receiving vehicle within which all vehicles have
maximum relevance.

B. Movement-Based Relevance Estimation

Due to the dynamic nature of road traffic, it makes sense to
respect the movement of vehicles for relevance estimation of
CAMs. Thus, speed and heading of the sender are included,
which are available in any CAM. In [9] we proposed to
calculate the relevance by

Rgeneral = max
trcv≤t≤trcv+tmax

(
1

max(dmin, d(t))
· 1

( ts + 1)γ

)
, (2)

where d(t) is the distance between sending and receiving
vehicle at time t given in seconds. The function maximizes
the relevance while predicting the distance d(t) over a limited
time interval, i.e., trcv ≤ t ≤ trcv + tmax. A penalty term
reduces the relevance over time, parameter γ is used for that
purpose. For the distance prediction, we proposed two different
extrapolation functions for the movement of the vehicles which
have different complexity.

1) Static Movement Extrapolation: We assume that both
sending and receiving vehicles move with constant speed and
heading given at trcv and call this approach staticRE. Its
formula is given in [9]. It disregards the fact that vehicles
change their heading and speed. As a result, the relevance
values based on static movement extrapolation may signifi-
cantly underestimate relevances if the sender approaches the
receiver faster than extrapolated.

2) Dynamic Movement Extrapolation: The dynamic move-
ment extrapolation (dynamicRE) considers changes of vehicle
movement in both speed and heading [10]. As we do not know
how these changes will take place, we assume a movement
of the sender towards the receiver such that the relevance is
maximized.

Unlike the other presented REFs, the dynamicRE requires
an iterative algorithm for relevance computation [10]. It iter-
atively changes the speed and heading of the sending vehicle
such that it moves towards the receiving vehicle. Therefore, its
computation takes significantly longer to execute than the one
of other approaches. To enable fast execution, we implemented

this algorithm as a characteristic map. We calculated the
relevances for variations of relative position (∆x, ∆y), relative
speed (∆v) and absolute speed of the sending vehicle (vS), and
stored them in a four-dimensional matrix. An approximation
of the relevance value can be determined by interpolation of
the values from this matrix. We use linear interpolation for
efficiency reasons [16]. This specific implementation is called
mappedRE.

C. Encounter Probability

The encounter probability approach was proposed for mes-
sage forwarding (encounterRE) in [14]. However, it may also
be used for message selection purposes. It assumes static
vehicle movement and calculates the shortest distance ∆d
between sending and receiving vehicles in the near future by

REP =
1

α · min (∆d,∆dmax) + β · min (∆t,∆tmax) + 1
. (3)

The parameter ∆t is the time when ∆d is reached, α and β
are weights, and thresholds ∆dmax and ∆tmax limit ∆d and
∆t.

III. SELECTION MECHANISM

In this section we develop a mechanism that buffers mes-
sages and periodically selects the most relevant one according
to a given REF for processing. We propose to use a rea-
sonably sized priority queue to store CAMs in the order of
their relevance and to dequeue most relevant messages for
processing. Then we improve this simple idea by two features.
First, we provide a data structure to efficiently avoid that
multiple messages from the same sender are stored in the
queue. Second, we add a scalable mechanism for message
aging, so that younger messages may be preferred to older
messages even though they are less relevant at their arrival.

The overall mechanism presented in this section combines
well-known concepts like priority queues and hash tables
with an aging mechanism to meet the specific requirements
of an automotive environment and its state-of-the-art driver
assistance systems.

A. A Priority Queue

We assume that when messages are received, their relevance
is computed with a REF and tagged to them. We organize
a message buffer as priority queue whose items are sorted
according to the tagged relevance. We further assume that
messages are processed at rate rprocess and implement a thread
that periodically polls the queue with a period of 1

rprocess
. If a

message waits longer than 1 s, it can be considered outdated
because CAMs are generated at least once per second [5].
Therefore, the queue size Qmax can be limited such that the
least relevant message in the queue does not wait longer than
1 s for processing if no more relevant messages arrive until
then. Therefore, Qmax = rprocess · 1 s is sufficient. Upon arrival
of a message, the message is inserted into the sorted queue
according to the tagged relevance if the queue is not full. If
the queue is full and the tagged relevance of the least relevant
item in the queue is less relevant than the new message, that



least relevant message is deleted from the queue and the new
message is inserted. Otherwise, the new message is discarded.

The data structure for the priority queue has to provide
efficient methods for insertion of new messages, retrieval and
deletion of the least and most relevant messages. Therefore, it
may be implemented with specialized heap structures such as
the interval heap [17]. Due to the limited size of the queue,
binary search trees such as red-black-trees may also provide
sufficient efficiency.

B. Improvement: Avoiding of Multiple Buffered Messages from
a Single Sender

The simple priority queue may store multiple messages
of the same sender. If younger messages are more relevant,
they will be processed before older messages of the same
sender, possibly leading to confusion in applications. More-
over, processing of older messages seems a waste of capacity
if younger messages of the same sender are available in the
queue. Therefore, we propose data structures and algorithms
to avoid multiple buffered messages from a single sender at a
time.

To implement the above presented idea, the queue needs
to be checked for older messages of the same sender when
a new message arrives. To avoid a time-consuming iterative
checking, we propose a second data structure that uses a hash
table to quickly determine whether a message of the same
sender is contained in the queue. To that end, we generate
a vehicle entry containing the sender ID of a message when
storing the message in the queue, hash the vehicle entry into
a hash table using the sender ID, and bidirectionally link the
vehicle entry with the corresponding message. If the field in
the hash table is already occupied by another vehicle entry, the
new entry is appended in form of a double-linked list. Figure 1
illustrates that a message is queued according to its relevance
and associated with a vehicle entry in the hash table.

When a new message arrives, the hash table is first checked
for a vehicle entry with the same sender ID. If such an entry
exists, an older message of the same sender is found. That
message is removed from the queue, valuable information is
extracted and appended to the new message. This valuable
information may be extracted from old messages containing
data fields–such as the position history–which are not part of
the new message according to [5]. The old message is deleted,
the new message is bidirectionally linked with the vehicle
entry, and inserted into the queue according to its relevance.
If there is no entry for the same sender ID, a new one is
created, associated with the message, and hashed into the table
when storing the message in the queue. When a message is
deleted from the queue for processing, the vehicle entry is also
removed from the hash table.

C. Improvement: Relevance Decrease over Time for Buffered
Messages

So far the system uses the messages’ tagged relevance
for selection decisions. However, the information contained
in messages loses accuracy over time as vehicles move and

Fig. 1. Messages are linked to a vehicle entry which is hashed into a hash
table. This structure helps to find old messages of the same sender with only
little overhead when a new message arrives.

new messages are sent. Therefore, we want to avoid that the
buffer is filled with many old relevant messages so that new,
slightly less relevant messages are dropped. To that end, we
want to reduce the relevance of buffered messages over time.
Adapting the relevance of all buffered messages according
to the presented REFs would be time-consuming. Instead
of modifying their tagged relevance we rather increase the
relevance of new messages by a growing offset Roffset(t) upon
arrival, which corresponds to a linear relevance decrease of
buffered CAM messages.

The offset for a message at arrival time t is computed by
Roffset(t) = t−tstart

α . The aging parameter α is given in seconds
and controls how quickly the priority of a message is reduced.
As the offset increases by 1 within α time and relevance values
are limited by 1, any message arriving α time later than an
old message will be more relevant and may replace the old
message if the buffer is fully occupied.

For reasonable values of α, the data type double allows
Roffset(t) to grow without arithmetic overflow for very long
time.

IV. EVALUATION ENVIRONMENT

Our evaluation environment contains two main modules: a
real communication unit and a road traffic simulation. We
describe them in the following. Figure 2 depicts the overall
information flow in our evaluation. For the sake of complete-
ness, the dotted parts in the communication unit illustrate the
802.11p communication stack which is not leveraged in our
evaluation.

A. Simulation Methodology

To generate realistic CAM input for the communication unit,
we apply our tool chain presented in [8].

It comprises the open source traffic simulator SUMO which
is chosen due to its efficient implementation. It allows for road



Fig. 2. Simulation data are replayed and used as input for a real commu-
nication unit that serves for runtime measurement and yields delay statistics
for buffered messages.

90900 move 50.929612 6.951889 0 0 0 0 -13.18 13.84 3 0
90932 CAM "000000000037C8014987349873367[...]"
90972 CAM "000000000037C8014577245772363[...]"
90980 CAM "000000000037C8014767847678365[...]"
91000 move 50.929623 6.951885 0 0 0 0 -12.12 13.78 3 0
91041 CAM "000000000037C8014675346753363[...]"
91071 CAM "000000000037C8014721347213364[...]"
91091 CAM "000000000037C8014712547125364[...]"

Fig. 3. Excerpt of a generated replay file for a probe vehicle. It shows
CAMs from three neighboring vehicles. The first column is a time stamp.
Lines with move contain movement updates for the probe vehicle such as
GPS position, speed and heading. CAM lines represent received CAMs from
neighboring vehicles, encoded as byte string.

traffic simulation with thousands of vehicles [18]. Its inputs are
road maps, vehicle and driver definitions, and vehicle routes.
Based on SUMO’s traffic traces we determine transmission
instants of CAMs for any vehicle in the simulation according
to the current movement pattern as specified in [5].

Then, we use the statistical channel model from [7] to
determine which CAM is successfully received by a vehicle.
Finally, we select all CAMs received by one probe vehicle
and feed them into the enhanced communication unit together
with its own movement in the form of a single file. Figure 3
shows an excerpt of such a file. With this methodology we
analyzed over 90,000 CAMs in total. The CAMs are encoded
using the standardized format with an ASN.1 library.

The effect of the message drop feature, the elimination
of old messages, and the relevance decrease over time can
be observed best in overload situations where the message
buffer is mostly filled. Therefore, we choose for simulation a
high-load scenario for which we observed very high received

message rates in [8]. It consists of four parallel lanes in each
driving direction on the Autobahn A5 near Frankfurt/Main,
Germany. Additionally we use the TAPASCologne scenario as
a representation for realistic traffic from the metropolitan area
of Cologne, Germany [19]. This scenario contains detailed
road topology data and traffic patterns defined by an open
source community.

B. Communication Unit

The communication unit is also illustrated in Figure 2.
It contains the communication stack and additional testing
functions. We integrated the REFs and the selection algorithm
into the stack such that every received CAM is processed by
these modules.

The communication stack contains a record and replay
function which is used to store data from real test drives and to
replay it on desktop computers. We use that function to inject
the files with the simulation data for the test vehicle. The
complete communication stack, except for the lower layers,
processes this replay data as it was received via the wireless
channel. Additionally, we implemented a statistics module
which determines the runtime of given code with an accuracy
in the order of microseconds.

We run our software on the Communication Control Unit
(CCU) developed for the German field test simTD. The CCU
contains a single core 400 MHz Freescale PowerPC CPU with
256 MByte RAM and 512 MByte flash memory. Its core task
in simTD was to handle the wireless VANET communication
and the connection to the in-car networks [20].

V. COMPUTATION TIME OF REFS

We evaluate the computation effort for various REFs on our
CCU. The results show that the implementation of proposed
REFs is sufficiently efficient to be used in series control units.

We measure the average elapsed time on the evaluation
platform during execution. Moreover, we use the profiling tool
Valgrind/Callgrind [21] to determine the average number of
instructions for the computation of relevance values.

Table II lists the average execution times in milliseconds for
all REFs and also provides the execution time relative to the
distance-based REF. We observe that all REFs have an average
runtime around 0.05 ms to compute the relevance for a single
message. An exception is the dynamicRE, but approximating
dynamicRE by mappedRE yields again runtimes around 0.05
ms.

Our analysis of received message rates in [8] resulted in
500 messages per second in an overload scenario. With the
measured REF runtimes of around 0.05 ms per message such
rates can be well supported by the given hardware.

The results of the runtime measurement depend on the
evaluation hardware and its software setup. On a multiprocess-
ing system each process may be interrupted by the scheduler
to execute other processes. Therefore, the measured runtime
may include the intermittent execution of other processes. In
contrast, the number of CPU instructions of an algorithm is
constant for a given platform. The instruction count can be



REF Average runtime [ms] Relative runtime Average number of instructions
distanceRE 0.04688 1 1621
staticRE 0.0603 1.29 2176
dynamicRE 1.0056 21.45 126,899
mappedRE 0.0633 1.35 2625
encounterRE 0.04651 0.99 1694

TABLE II
RUNTIME PERFORMANCE OF VARIOUS REFS AVERAGED OVER ABOUT 30,000 MESSAGES.

used to extrapolate the execution performance of an algorithm
on other hardware of the same platform. Table II shows that
the number of instructions is in a similar order of magnitude
for all REFs except for dynamicRE.

VI. PERFORMANCE EVALUATION OF THE MESSAGE
SELECTION MECHANISM

In this section, we evaluate relevance-specific performance
metrics that illustrate the effect of the proposed CAM selection
mechanism. We perform this study with staticRE as REF
and normalize its return values by linear interpolation to the
range [0, 1]. The message processing rate rprocess is set to 100,
whereas the rate of received messages is up to 500 per second
[10]. Figures 4 and 5 show the results for the TAPASCologne
scenario and the Autobahn A5 scenario, respectively.

A. Relevance Distribution of CAMs

The relevance distribution of CAMs depends on the road
traffic scenario. The TAPASCologne scenario represents traf-
fic with mostly moderate message rates. The Frankfurt A5
scenario was saturated in the sense that high rates of CAMs
were received.

Figure 4(a) shows the relevance distribution of received
CAMs for the TAPASCologne scenario. Almost 82% of the
received messages have relevance values below 0.1. This
figure also shows that almost all received CAMs in the
TAPASCologne scenario are selected. There is only a small
percentage of dropped messages (0.3%, loss probability is the
difference of the values on the top and on the bottom of the
bars in the figure). This means that in this scenario there is
no overload most of the time.

Figure 5(a) shows the relevance distribution of received
CAMs for the Frankfurt A5 scenario. Only 6.4% of the CAMs
have a relevance value of more than 0.5, while 69.2% have a
very low relevance of less than 0.1. Thus, only a minority of
CAMs has high priority and should be preferentially treated,
i.e., delivered without loss and with only little delay. The
relative relevance distribution of selected CAMs shows that
beginning at relevance values from 0.3 and above all messages
are selected by the system. Many messages with relevance
values below 0.3 are dropped due to overload.

B. Waiting Times

As the message age has impact on the usefulness of a
message for applications, we measure the time messages wait
in the buffer until they are selected by the system.

For the TAPASCologne scenario Figure 4(b) shows that
even if almost all received CAMs are selected, their waiting

times depend on each CAM’s relevance value. We observe
a slight increase of waiting times for relevance values of 1
down to 0.1. Highly relevant messages are selected within
10 ms, whereas messages with relevance values between 0.1
and 0.2 have a waiting time of mostly less than 50 ms. Only
messages with very low relevance values below 0.1 have an
average waiting of 220 ms.

In the Frankfurt A5 scenario Figure 5(b) shows that selected
CAMs with a relevance between 0.5 and 1.0 face an average
waiting time of less than 50 ms and a 95%-quantile of less
than 75 ms. Very relevant CAMs with values above 0.9 are
all processed even within 10 ms. In contrast, CAMs with a
relevance below 0.1 or between 0.1 and 0.2 wait on average
1689 ms or 425 ms with 95%-quantiles of 7.5 s and 3.2 s,
respectively.

Thus, highly relevant CAMs are preferentially treated. How-
ever, some little relevant CAMs are delivered so late that
they are unlikely to be useful for applications, which will be
improved by relevance reduction over time.

C. Impact of Relevance Aging over Time

We evaluate the relevance reduction over time by applying
the aging parameters α = 10 s and α = 1 s to the same
simulation traces.

In the TAPASCologne scenario the influence of the aging
parameter α is only relevant for CAMs with very little
relevance. For α = 10 s their average waiting time decreases
to 140 ms.

For the Frankfurt A5 scenario the average waiting time of
CAMs with low relevance decreases to average values of 341
ms and 75 ms with maximum values of 1.1 s and 80 ms. This
is a significant improvement for data freshness.

For the selected simulation data and hardware, α = 1 s
seems to be a reasonable setting. It results in waiting times
below 100 ms for most messages even for medium relevance
values. However, if the hardware resources are modified or
other scenarios are more relevant for the applications, another
parameter setup may yield better results.

VII. CONCLUSION

Vehicles may exchange large rates of Cooperative Aware-
ness Messages (CAMs) in the near future which poses a
challenge for communication control units (CCUs). They
quickly need to process the most relevant CAMs and deliver
them to applications. We proposed a message selection mech-
anism for that purpose which requires a relevance estimation
function (REF) to preferably process most relevant CAMs. We



(a) Relevance distribution of received (percentage values over the bars) and selected (percentage values inside the bars) CAMs on a logarithmic scale.

(b) Relevance-dependent waiting times of selected CAMs for different aging parameters α. 5%-quantiles, means, and 95%-quantiles are given.

Fig. 4. Results for the TAPASCologne scenario.

implemented several REFs whose quality has been compared
in [11] on a CCU and showed that the runtime of most of
them is short enough to compute relevance values for all
CAMs. The simulative performance evaluation showed that
message selection drops little relevant CAMs under overload
and thereby increases the average relevance of processed
CAMs. Most CAMs have low relevance. Highly relevant
CAMs are almost all processed with little delay. Little relevant
CAMs are likely to be selected with more delay. We showed
that this tradeoff can be effectively controlled by an aging
mechanism which is another proposed optimization.
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