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ABSTRACT
Moving averages (MAs) are often used in adaptive systems
to monitor the state during operation. Their output is used
as input for control purposes. There are multiple meth-
ods with different ability, complexity, and parameters. We
propose a framework for the definition of MAs and develop
performance criteria, e.g., the concept of memory, that al-
low to parameterize different methods in a comparable way.
Moreover, we identify deficiencies of frequently used meth-
ods and propose corrections. We extend MAs to mov-
ing histograms which facilitate the approximation of time-
dependent quantiles. We further extend the framework to
rate measurement, discuss various approaches, and propose
a novel method which reveals excellent properties. The pro-
posed concepts help to visualize time-dependent data and to
simplify design, parametrization, and evaluation of technical
control systems.

1. INTRODUCTION
Moving averages (MAs), moving histograms, and time-

dependent rates calculate time-dependent statistics from
time series while giving more importance to recent than to
old samples. The exponential MA (EMA) is a simple exam-
ple: Ai = a ·Ai−1 + (1− a) ·Xi. (1)

Xi is the size of an observed sample at time i and Ai is
the time-dependent average at that time. The smoothing
parameter a is often set to a = 0.9, but there is only little
insight in literature about appropriate configuration.

On the one hand, the above mentioned methods are help-
ful to track and visualize the behavior of technical systems
over time. On the other hand, they are used for control
purposes by adaptive systems to observe their state and re-
act appropriately. A prominent example is TCP [1] which
estimates the current roundtrip time (RTT) by exponential
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smoothing of individual RTT samples. As another exam-
ple, we currently develop an automatic bypass for a rate-
constraint firewall using software-defined networking (SDN).
The firewall is attached to a border switch which steers all
in- and outgoing traffic through the firewall. Traffic leaving
the firewall is monitored by exporting every nth packet to
the SDN controller using sFlow. The controller calculates
a time-dependent rate over a relatively short time scale to
detect congestion when a rate threshold is exceeded. Then,
the controller bypasses sampled flows around the firewall
through installation of appropriate flow rules on the switch.
As the switch can support only a limited number of rules,
the installation rate may be high if congestion occurs rather
seldom, and should be low otherwise. To that end, we track
congestion using a MA over a relatively long time scale and
use its value for computation of a suitable offloading rate.

In this paper, we consider multiple MA methods with dif-
ferent parameters. We define some metrics for MAs that re-
late to time scale. The memory is most important and helps
to set the parameters of the different methods such that their
output behaves similarly. MAs are mostly applied under the
assumption that samples are equidistantly spaced in time
(evenly spaced time series). However, in practice unevenly
spaced time series may also occur. Therefore, we adapt well-
known MA methods such that the time between samples
has influence on calculated average values. We show that
EMA has a strong bias towards the first observed sample
X0 and propose a method for an unbiased EMA (UEMA).
We demonstrate that EMA’s existing extension for unevenly
spaced time series (TEMA) is even persistently biased and
suggest an unbiased TEMA (UTEMA). A challenge for the
application of MAs is the tradeoff between accuracy and
timeliness: MAs require a large memory to produce accu-
rate estimates for mean values which is desired under the
assumption of a stationary process. However, they need a
short memory to quickly reveal changed behavior of a non-
stationary process. We illustrate this tradeoff and give rec-
ommendations for appropriate parametrization. We propose
moving histograms (MHs) as a straightforward extension of
MAs including an efficient implementation. They allow ap-
proximation of time-dependent quantiles. Time-dependent
rates should reflect the recent intensity of a sample pro-
cess. We define time-dependent rate measurement (TDRM)
as an extension of MAs. The time scale of TDRM can be
controlled by the memory of the underlying MA. We review
and compare existing TDRM methods and suggest TDRM-
UTEMA as a novel method which exhibits desired proper-
ties.
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We believe that this rather elementary work contributes
to a more informed usage of MAs, MHs, and TDRM. It
focuses on online measurement, i.e., only the past of the
process is known at measurement time. In contrast, offline
measurement can consider a complete time series as input
and smooth values or determine rates by leveraging both
past and future samples around an observation point. While
this work considers time series in the time domain, there is
a large body of related work for time series analysis in the
frequency domain [2].

The paper is structured as follows. Section 2 shows that
MAs are used in various fields with different applications.
Section 3 provides a novel framework to define MAs, sug-
gests novel metrics to characterize MA properties, in partic-
ular the memory, reviews well-known MA approaches, and
proposes new methods. Section 4 studies the impact of mem-
ory on the accuracy and timeliness of UEMA. MAs are ex-
tended towards MHs in Section 5. An extension for TDRM
is proposed in Section 6: existing methods and a novel one
are presented and compared. Section 7 concludes this work.

2. RELATED WORK
Though exponential smoothing is a standard technique

for scientific work, it is hard to track back its roots in sci-
entific literature. Books about fundamental statistics like
[3] present only unweighted (simple) and weighted moving
averages. However, we did not find an overview of general
MA concepts and their properties. MAs are known under a
broad range of different terms, e.g., they are also referred to
as smoothing or filtering methods. Eckner describes simple
and exponential moving averages as well as rolling operators
[4] for the purpose of smoothing. The work in [5] presents
similar concepts for the specific requirements of unevenly
spaced time series. Autoregressive MAs and variants are
discussed to model stochastic processes for the purpose of
forecasting which is different from our application which is
the calculation of an average value for the current observa-
tion point.

MAs are often applied in networking. Three different
modifications of EMA (low pass, gradient adaptive, and ret-
rospective) for bandwidth estimation are presented in [6].
Conga [7] is a distributed congestion-aware load balanc-
ing mechanism for datacenters. It leverages a discounting
rate estimator which is similar to EMA. CSFQ [8] aims at
providing fair bandwidth allocation. Exponential averaging
with variable weights is used to estimate flow arrival rates.
The active queue management PIE [9] is designed to con-
trol latency and jitter in the Internet. Its departure rate
estimation uses exponential smoothing. TCP’s smoothed
roundtrip time (SRTT) mechanism computes the retrans-
mission timeout in data communication with exponential av-
eraging [1]. In [10] we presented a rate measurement method
based on exponential smoothing. It was leveraged by the au-
thors in [11] for time-decaying Bloom filters. Furthermore,
we introduced the concept of moving histograms in [12] to
calculate time-dependent quantiles.

MAs also have application in other areas. A simple
window-based moving average is used in [13] for detection
of the end of the transient phase of a stochastic process. To
that end, a symmetric moving window is applied as low-pass
filter to a time series, extracting its long-term trend. Expo-
nential smoothing is widely used in the context of operations
research and financial analyses for trend forecasting (e.g.

[14]). The Holt-Winters forecasting procedure [15] uses three
degrees of smoothing to extract level, trend, and seasonal
components in time series. In quality control, exponential
smoothing with optimized weights is used for the genera-
tion of control charts which detect exceedance or shortfall
of critical boundaries [16, 17].

3. MOVING AVERAGES (MA)
We consider MAs for samples observed with evenly and

unevenly spaced time series. For both cases, we propose
a general definition of MAs. We introduce several perfor-
mance metrics to characterize properties of MAs. We con-
sider specific MAs and express their properties depending on
their parameters. We point out differences among presented
MAs, show that widely used exponential moving averages
for evenly and unevenly spaced time series have an initial or
even persistent bias, and propose unbiased variants.

3.1 MAs for Evenly Spaced Time Series
Let (Xi)0≤i<∞ be an evenly spaced time series with sam-

ples of size Xi and ∆t time between consecutive samples
(inter-sample time). We define a MA Aj for observation
point j by

Sj =
∑

0≤i≤j

gi(i− j) ·Xi (2)

Nj =
∑

0≤i≤j

gi(i− j) (3)

Aj =

{
Sj
Nj

Nj > 0

0 otherwise.
(4)

The sample-specific discrete weight functions gi(.) are char-
acteristic for special types of MAs. They are used to
compute a weighted sample sum Sj and weighted sample
number Nj . Thereby, the weight functions gi(.) may re-
duce the impact of samples Xi on the MA that are dis-
tant from the observation point j. For most MA types, the
weight gi(0) for the most recent sample takes the maximum
gmaxi = maxk(gi(k)). The function decreases monotonously
towards negative and positive arguments whereby only neg-
ative arguments are considered for online measurement. The
fraction of the weighted sample sum and the weighted sam-
ple number yields the MA Aj if the number Nj is positive.
Otherwise, we define the MA to be zero.

3.1.1 Metrics
If the weight functions gi(.) for samples Xi do not differ,

their subscript as well as those of the following metrics may
be omitted.

The contribution Ci quantifies how much a sample Xi
contributes to all average values Aj . It can be calculated by

Ci =
∑

−∞<k≤0

gi(k) ·∆t. (5)

If contributions Ci differ, the MA has a bias to towards
samples with larger contributions.

The memory Mi quantifies the average duration over
which a sample Xi contributes to average values Aj . It
considers fractional contributions relative to the maximum
sample weight gmaxi and can be derived as

Mi =
Ci
gmaxi

. (6)



Essentially, the memory reflects the time scale over which
samples are averaged. If weight functions gi(.) differ among
samples, they may – but do not need to – yield different
contributions Ci and memory Mi.

The memory depends on the inter-sample time ∆t which
must be taken into account when applying MAs in prac-
tice. A MA may be used to track the transmission delay of
packets on a communication line. Transmission of packets
with 1500 bytes yields inter-sample times of ∆t = 12 ms and
∆t = 0.012 ms on a 1 Mb/s and 1 Gb/s link, respectively.
Irrespective of the specific type of MA, the resulting mem-
ory differs by three orders of magnitude if MAs are applied
with identical parametrization. If the timely dynamics of the
measured averages should be comparable, the parameters of
the MAs need to be adapted to the specific inter-sample
time ∆t so that the MAs exhibit the same memory for all
considered processes.

The delay Di quantifies the average age of all contribu-
tions of a sample Xi to all average values Aj . It is computed
by

Di =
∑

−∞<k≤0

(|k| ·∆t) · (gi(k) ·∆t)
Ci

. (7)

Shifting a MA’s weight function by j to g∗i (k) = gi(k + j)
for k ≤ −j and g∗i (k) = 0 for k > −j leads to another MA
with the same memory but a larger delay.

3.1.2 Cumulative Mean (CumMean)
CumMean is defined by

Aj =
1

j + 1
·
∑

0≤i≤j

Xi. (8)

It fits the Definitions (2) – (4) for homogeneous weights
g(k) = 1, −∞ < k ≤ 0. Thus, each sample exhibits
a contribution, delay, and memory of M = D = C =
∞ · ∆t. Figure 1(a) visualizes the evolution of the Cum-
Mean for the evenly spaced time series (X0, ..., X11) =
(1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0). The impact of recent samples
diminishes with increasing time index because all past sam-
ples equally contribute to CumMean’s average. Therefore,
CumMean does not focus on the recent evolution of the ob-
served process and cannot provide appropriate feedback for
self-adapting systems.

3.1.3 Window Moving Average (WMA)
WMA, also known as simple moving average (SMA) [4],

essentially computes the arithmetic mean of the last w sam-
ples whereby w is an integer. The weighted sample sum is

Sj =
∑

max(0,j−w+1)≤i≤j

Xi (9)

and the weighted sample number is Nj = min(w, j + 1).
This fits the Definitions (2) – (4) for weights

g(k) =

{
1 −w < k ≤ 0

0 otherwise
. (10)

Contribution and memory are C = M = w ·∆t and delay is

D = (w−1)·∆t
2

= M
2
− ∆t

2
.

Figure 1(a) visualizes the evolution of WMA-based aver-
ages for the above introduced sample series. It yields an
average value of A11 = 0 because it disregards past sam-
ples outside its window. Furthermore, it yields A5 = 0.75
and A6 = 0.75 although the observed ’1’ are younger in A5

than in A6. This is due to the fact that all samples within
a WMA’s window are equally weighted.

3.1.4 Disjoint Windows Moving Average (DWMA)
DWMA partitions a time series into sets of consecutive

and disjoint windows Wk = {k · w ≤ i < (k + 1) · w} with
w time indices each. At the end of such a window, the
arithmetic mean of the samples falling in this window is
taken as current average until the next measurement value
is available. This can be denoted by

Sj =

0 j < w − 1∑
i∈W

(b j+1
w
c−1)

Xi otherwise (11)

and Nj = w. It fits the Definitions (2) – (4) for sample-
specific weights

gi(k) =


1


(i mod w)− (2 · w − 1)

< k ≤
(i mod w)− (w − 1)

0 otherwise.

(12)

Thus, contribution and memory are C = M = w · ∆t.
The sample-specific delay is Di = w−1

2
·∆t + ((w − 1) − (i

mod w)) · ∆t and the average delay is D = (w − 1) · ∆t =
M −∆t.

Figure 1(a) shows the evolution of DWMA. For the first
w − 1 observation points, there is no actual average value
available. Due to its increased delay, DWMA clearly lags
behind WMA and it is coarser.

3.1.5 Unbiased Exponential Moving Average
(UEMA)

We propose UEMA as a novel algorithm using the weight
function

g(k) = a−k (13)

and the Definitions (2) – (4) for the computation of the
average values. The underlying geometric model enables an
elegant, recursive calculation:

Sj =

{
Xj j = 0

a · Sj−1 +Xj j > 0
(14)

Nj =

{
1 j = 0

a ·Nj−1 + 1 j > 0
. (15)

UEMA has a contribution and memory of C = M = ∆t
1−a ,

and a delay of D = a·∆t
1−a for all samples, i.e., D = a ·M .

Figure 1(a) compares the evolution of UEMA with the one
of WMA for the same memory M = 4 · ∆t. While WMA
disregards samples that lie outside its window and yields
A11 = 0, UEMA respects the full past of the process and
yields A11 = 0.21. WMA also disregards the position of
samples within its window. In contrast, UEMA is sensitive
to that and yields A5 = 0.87 (observed 0 in WMA’s window
is old) and A6 = 0.62 (observed 0 in WMA’s window is
young).

Figure 1(b) illustrates the impact of UEMA’s memory on
the evolution of the MA. The MA is more inert for larger
memory, i.e., for a larger smoothing factor a.

3.1.6 Exponential Moving Average (EMA)
EMA, also known as Exponentially Weighted MA

(EWMA) or exponential smoothing, calculates its weighted
sum Sj as

Sj =

{
X0 j = 0

a · Si−1 + (1− a) ·Xj j > 0
(16)

and the weighted number of samples is Nj = 1. Thus, Sj
already computes Aj (see Equation (1)). These formulae fit
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Figure 1: Timely evolution of MAs for evenly spaced time series.

the Definitions (2) – (4) for sample-specific weights

gi(k) =

{
a−k i = 0

(1− a) · a−k otherwise
. (17)

The two different weight functions yield the same mem-
ory M = ∆t

1−a and delay of D = a·∆t
1−a which equal those

of UEMA. However, the contribution of X0 is C0 = ∆t
1−a

while the one of all other samples is Ci = ∆t. This causes
a bias towards X0 in the time series of the resulting MA
Aj . To illustrate this effect, Figure 1(c) compares the re-
sulting averages for EMA and UEMA for consecutive sam-
ples (X0, ..., X11) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). EMA and
UEMA are both configured with a = 0.75, i.e., M = 4 ·∆t.
The difference between the two curves is the bias induced
by EMA’s larger contribution of X0. As the bias vanishes
over time, EMA may be used if accuracy for initial values
Aj does not matter. This may be advantageous as EMA is
slightly simpler than UEMA. While EMA is already applied
in many technical systems and research papers, UEMA is a
novel method proposed in this work.

3.2 MAs for Unevenly Spaced Time Series
Let (Xi)ti∈T ,0≤i<∞ be an unevenly spaced time series of

samples with different size Xi. Figure 2(a) contrasts two
examples to an evenly spaced time series.

MAs for unevenly spaced time series respect the time
structure of samples such that the impact of a sample on
resulting average values diminishes over time instead with
progressing time index. We define a MA At for observation
point t by

St =
∑
{i:ti≤t}

gi(ti − t) ·Xi (18)

Nt =
∑
{i:ti≤t}

gi(ti − t) (19)

At =

{
St
Nt

Nt > 0

0 otherwise
. (20)

Definitions (18) – (20) are analogous to Definitions (2) – (4)
but account for the fact that sample times are now contin-
uous. Therefore, the sample-specific weight functions gi(.)
are also continuous.

3.2.1 Metrics
The metrics are also analogous to those of MAs for evenly

spaced time series. The contribution Ci of sample Xi can
be calculated as

Ci =

∫ 0

−∞
gi(t)dt (21)

and the memory is
Mi =

Ci
gmaxi

(22)

with gmaxi = max−∞<t≤0(gi(t)). The delay is

Di =

∫ 0

−∞ |t| · g(t)dt

Ci
. (23)

3.2.2 Time Window Moving Average (TWMA)
TWMA computes the average of the samples within a

recent time window of duration W . Let Wt = {i : ti ∈
(t−W ; t]} be the index set of samples arriving within that
window at time t. Average values for TWMA can be com-
puted by Nt = |Wt| and

St =

{
0 |Wt| = 0∑
i∈Wt Xi otherwise

. (24)

This fits the Definitions (18) – (20) for the weight function

g(t) =

{
1 −W < t ≤ 0

0 otherwise
. (25)

Contribution and memory are C = M = W and the delay
is D = W

2
= M

2
. The resulting MA At returns to zero if

the last sample is older than W , which may be an undesired
property. We omit illustrations of TWMA due to space lim-
itations.

3.2.3 Disjoint Time Windows Moving Average
(DTWMA)

DTWMA partitions the time axis into consecutive mea-
surement intervals of duration W , computes the arithmetic
mean of samples observed within a measurement interval at
its end, and uses this average value until the next average
value is available. Let Wk = {i : ti ∈ (k ·W ; (k+ 1) ·W ]} be
the index set of samples arriving within window number k
since measurement start at time t = 0. Average values for
DTWMA are computed by Nt = |W(d t

W
e−1)| and
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Figure 2: Timely evolution of MAs for unevenly spaced time series.

St =

0 t < W ∨ |W(d t
W
e−1)| = 0∑

i∈W
(d t
W
e−1)

Xi otherwise
. (26)

These equations fit Definitions (18) – (20) for sample-
specific weight functions

gi(t) =


1


ti − (d tj

W
e+ 1) ·W

< t ≤
ti − d tjW e ·W

0 otherwise

. (27)

Thus, contribution and memory are Ci = Mi = W . The
sample-specific delay is Di = (d ti

W
e ·W − ti) + W

2
and the

average delay is D = W . The MA At returns to zero af-
ter a measurement interval without any samples. We omit
illustrations of DTWMA due to space limitations.

3.2.4 Unbiased Time-Exponential Moving Average
(UTEMA)

We propose UTEMA as a novel MA method which uses
the exponential weight function

g(t) = eβ·t (28)

in Definitions (18) – (20). The underlying exponential model
allows for recursive equations:

St =


0 t < t0

X0 t = t0

e−β·(t−ti−1) · Sti−1 +Xi t = ti

e−β·(t−ti) · Sti ti < t < ti+1

(29)

Nt =


0 t < t0

1 t = t0

e−β·(t−ti−1) ·Nti−1 + 1 t = ti

e−β·(t−ti) ·Nti ti < t < ti+1

. (30)

UTEMA has a contribution, memory, and delay of C = M =
D = 1

β
.

Figure 2(b) shows that UTEMA respects the time struc-
ture of the sample processes given in Figure 2(a). If samples
first arrive fast and then slowly, UTEMA yields a lower av-
erage At=12·∆t at the end of the observation interval than
for the evenly spaced time series because observed ’1’ are
older. Likewise, if samples first arrive slowly and then
fast, UTEMA leads to a larger At=12·∆t than for the evenly

spaced time series because observed ’1’ are younger. When
UEMA is applied for one of the unevenly spaced time series,
it yields UTEMA’s average values for the evenly spaced time
series.

UEMA can provide exactly the same average values for
an evenly spaced time series as UTEMA if its smoothing
factor is set such that it yields the same weights for integral
multiples of ∆t, i.e., a = e−β·∆t. Figure 3 compares such
weight functions of UTEMA and UEMA with a smoothing
rate of β = 0.25

∆t
and smoothing factor of a = 0.7788, respec-

tively. The memory for UTEMA is M = 4 ·∆t while the one
for UEMA is M = 4.52 ·∆t. The discrepancy is due to the
fact that UTEMA’s weight function gUTEMA(t) interpolates
only the lower corners of UEMA’s weights gUEMA(k) and,
therefore, leads to a lower integral value. This difference
converges to ∆t

2
for large memory M .
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Figure 3: Weight functions for UEMA and UTEMA con-
figured such that they reveal equal weights for integral
multiples of ∆t (a = 0.7788 and β = 0.25

∆t
, respectively).

UTEMA yields a lower memory because its weight function
gUTEMA(t) interpolates only the lower corners of UEMA’s
step function gUEMA(k).

The difference between UTEMA’s average curves for
evenly and unevenly spaced time series quantifies the er-
ror caused by UEMA. Its practical significance depends on
the time scale of interest because the difference decreases for
increasing memory M . If the time structure of the observed
process is essential, UTEMA is a good alternative to UEMA
and also to TWMA which does not respect the time struc-



Table 1: Considered MAs including properties.

Method Param. Contribution C Memory M Delay D Delay D dep. on M Comments
MAs for evenly spaced time series

CumMean ∆t ∞ ∞ ∞ ∞ Does not discount
old samples.

WMA w,∆t w ·∆t w ·∆t (w−1)·∆t
2

M
2 −

∆t
2 Does not account

for samples outside
window and sample
position within win-
dow.

DWMA w,∆t w ·∆t w ·∆t (w − 1) ·∆t (avg.) M −∆t (avg.) Like WMA, addi-
tional delay

UEMA a,∆t ∆t
1−a

∆t
1−a

a·∆t
1−a a ·M Method proposed in

this work

EMA a,∆t ∆t
1−a , ∆t ∆t

1−a
a·∆t
1−a a ·M Bias towards X0

MAs for unevenly spaced time series

TWMA W W W W
2

M
2 May return to zero

(invalid value).
DTWMA W W W W (avg.) M (avg.) Like TWMA, addi-

tional delay

UTEMA β 1
β

1
β

1
β M Method proposed in

this work

TEMA β 1
β for X0, 1−e−β·(ti−ti−1)

β for Xi
1
β

1
β M Bias towards X0

and other samples

ture within its measurement window and may return to zero
in the absence of sufficiently young samples.

For UTEMA, the half-life time may be used as another

metric. It can be computed by H = ln(2)
β

, but it is not
applicable to most other MA variants.

3.2.5 Time-Exponential Moving Average (TEMA)
TEMA is sometimes used as adaptation of EMA to un-

evenly spaced time series [4]. Its sample sum is computed
by

St =


0 t < t0

X0 t = t0

e−β·(ti−ti−1) · Sti−1+ ti ≤ t < ti+1

(1− e−β·(ti−ti−1)) ·Xi

. (31)

and its weighted number of samples is Nj = 1. Thus, TEMA
is hardly simpler than UTEMA since it also requires the cal-
culation of exponential functions. The equations fit the Def-
initions (18) – (20) for the sample-specific weight functions

gi(t) =

{
eβ·t i = 0

(1− e−β·(ti−ti−1)) · eβ·t i > 0
. (32)

While EMA has only two different sample-specific weight
functions, those of TEMA may all be different. The contri-
butions are also sample-specific:

Ci =

{
1
β

i = 0
1−e−β·(ti−ti−1)

β
i > 0

. (33)

Nevertheless, the weight functions of all samples reveal the
same memory M = 1

β
which equals the one of UTEMA.

TEMA’s bias towards some samples is more severe than the
one of EMA because it does not vanish over time. Its im-
pact is illustrated in Figure 2(c). Sample sizes are 0 after a
short inter-sample time of 0.1 ·∆t and 1 after a long inter-
sample time of 1.9·∆t. While UTEMA yields average values
converge to 0.5 most of the time, TEMA’s average values
continuously increase as large samples have a larger contri-
bution than small samples in this process. We also simulated
a Poisson arrival process over 106 ·∆t time with rate λ = 1

∆t
and set the sample size Xi to the value of the preceding
inter-arrival time divided by ∆t. We averaged the obtained
time-dependent average values over time. UTEMA yields

1.11, 1.05, and 1.02 for M ∈ {∆t, 4 · ∆t, 10 · ∆t, 25 · ∆t}
while corresponding values for TEMA are 1.80, 1.91, and
1.96. Thus, the bias is significant and even increases with
larger memory.

3.3 Summary
Table 1 summarizes properties of considered MAs.

4. ANALYSIS OF UEMA
We illustrate the impact of UEMA’s memory on the ac-

curacy and timeliness of obtained averages. Accuracy ad-
dresses the deviation of UEMA’s computed average from
the true mean µ of an observed stationary sample process
(Xi)0≤i<∞. Timeliness addresses UEMA’s ability to early
reflect changes regarding µ in the observed process.

Table 2: Averaged squared deviation of computed averages
Ai from the known sample mean µ.

σ2

M(∆t) 1 3 10 30 100 300

3 0.1999 0.5997 1.9990 5.9969 19.9896 59.9687
10 0.0527 0.1580 0.5266 1.5798 5.2655 15.7966
30 0.0170 0.0511 0.1734 0.5112 1.7039 5.1116
100 0.0051 0.0152 0.0508 0.1525 0.5082 1.5246
300 0.0017 0.0051 0.0171 0.0514 0.1712 0.5136
1000 0.0005 0.0016 0.0053 0.0158 0.0527 0.1580

CumMean 0.0000 0.0000 0.0001 0.0004 0.0012 0.0036

4.1 Impact of Memory on Accuracy
We generate n = 106 normally distributed random

variables Xi with mean µ = 0 and variance σ2 ∈
{1, 3, 10, 30, 100, 300} and track them by UEMA with a
memory of M ∈ {3, 10, 30, 100, 300, 1000} · ∆t. Table 2
shows the arithmetic mean of the squared deviations of
the averages from the observed random variable’s mean µ:
dev2(n) = 1

n
·
∑

0≤i<n(Ai − µ)2. The accuracy of the esti-
mate depends on the variance of the observed process and
UEMA’s memory. It can be explained as follows. Accord-
ing to Equations (2) – (4) and (13), UEMA’s average value
Aj is the sum Sj of weighted, independent random variables
multiplied by the scalar value 1

Nj
. Therefore, the variance

of Aj can be calculated as



VAR[A] =

∑
0≤i<∞ a

2·i · σ2

(
∑

0≤i<∞ a
i)2

=
(1− a)2

1− a2
· σ2 =

σ2

2 · M
∆t
− 1
(34)

which explains the observation in our experiment.
Equation (34) helps to find a minimum smoothing fac-

tor a if the variance σ2 of the samples is roughly known.
We assume that the averaged values Aj are distributed ac-
cording to a normal distribution. With E[A] = µ and
VAR[A] = 1−a

1+a
· σ2 we define Y = A−µ√

1−a
1+a
·σ2

which is

distributed according to a standard normal distribution2.
Therefore, we get

P (−z1−α
2
≤ Y ≤ z1−α

2
) = 1− α (35)

P (µ− δ(a, α) ≤ A ≤ µ+ δ(a, α)) = 1− α (36)

with z1−α
2

being the (1− α
2

)-quantile of the standard normal

distribution and δ(a, α) = z1−α
2
·
√

1−a
1+a
· σ2. We conclude

that A deviates at most δ from the true mean µ with prob-
ability 1− α. This derivation helps to understand the ac-
curacy of UEMA depending on a, but cannot calculate the
accuracy when random variables with unknown variance σ2

are observed. A solution is to assume orders of magnitude
for σ2.

We use this derivation to choose a lower bound amin(α, ε)
for a such that a maximum error ε can be achieved with
probability 1− α:

amin(α, ε) ≥
1−

(
ε

σ·z1−α
2

)2

1 +

(
ε

σ·z1−α
2

)2 . (37)

Table 3 illustrates the accuracy of that approach for 107

normally distributed random variables and compares it with
a standard smoothing factor of a = 0.9.

Table 3: Percentage ρ of UEMA averages deviating at most
ε = 1 from the actual mean µ = 0 depending on smooth-
ing factor a. Smoothing factor amin is chosen for α = 0.1
(z1−α

2
= 1.645) according to Equation (37).

σ2 1 3 10 30 100 300

amin(α, ε) 0.4579 0.7795 0.9283 0.9755 0.9926 0.9975
ρ(amin(α, ε)) 0.8990 0.8989 0.8990 0.8902 0.8991 0.9001
ρ(a = 0.9) 1.0000 0.9881 0.8319 0.5740 0.3371 0.1987

Equation (37) helps to estimate probabilities with a cer-
tain accuracy. Probabilities p can be determined by counting
X = 1 if a sample fulfills a certain condition, and X = 0
otherwise. This yields a Bernoulli process with variance
σ2 = (1 − p) · p ≤ 0.25 which may be used to determine an
appropriate smoothing factor. Thus, amin = 0.99971 may
be used to estimate probabilities with accuracy of ε = 0.01
and error probability of α = 0.1.

4.2 Impact of Memory on Timeliness
To illustrate the ability of UEMA to reveal changed pro-

cess behavior, we simulate n+1 = 10001 samples of normally
distributed random variables Xi. The mean of Xi increases
over time and is set to E[Xi] = i

n
, 0 ≤ i ≤ n while the

variance σ2 = 1 remains stable. We performed this experi-
ment nruns = 10000 times to calculate average Ai and the

2The approach taken is similar but not equal to the estima-
tion of confidence intervals for the mean of independent sam-
ples. In our case, consecutive average values Aj are highly
correlated so that the variance cannot be derived from sam-
ples. We solve that problem by assuming an appropriate
value for σ2.

Table 4: Samples with increasing expectations E[Xi]. Aver-
age (Ai and empirical variance S2(Ai) of average values Ai
for UEMA with different memory and for CumMean (CM).

i 3333 6666 10000

M(∆t) Ai S2(Ai) Ai S2(Ai) Ai S2(Ai)

1 0.3355 0.9987 0.6773 1.0051 0.9886 1.0128
3 0.3297 0.1983 0.6680 0.2021 0.9949 0.2022
10 0.3320 0.0533 0.6648 0.0530 0.9975 0.0521
30 0.3305 0.0174 0.6623 0.0169 0.9964 0.0166
100 0.3233 0.0052 0.6557 0.0051 0.9899 0.0049
300 0.3032 0.0017 0.6361 0.0017 0.9702 0.0016
1000 0.2458 0.0005 0.5672 0.0005 0.9901 0.0005
3000 0.1972 0.0003 0.4475 0.0002 0.7370 0.0002
10000 0.1762 0.0003 0.3701 0.0002 0.5820 0.0001
CM 0.1670 0.0003 0.3334 0.0002 0.5001 0.0001

E[Xi] 0.3333 - 0.6666 - 1.0000 -

empirical variance S2(Ai) of the average values Ai. Table 4
shows these values estimated after i ∈ {3333, 6666, 10000}
steps by UEMA for different memory and for CumMean.

The table shows that the averaged averages Ai approxi-
mate the configured expectations E[Xi] well for small mem-
ory and clearly underestimate them for larger memory. Best
values are obtained in this specific experiment for a memory
of at most M = 100 · ∆t. We also observe that the sam-
ple variance S2(Ai) depends on the memory M but not on
the index i. The latter is due to the fact that all Xi have
the same variance σ2 so that the expectation of the sam-
ple variance can be approximated by V AR[Ai] = 1

2·M
δt
−1
·σ2

which is well approximated by the values in the table. As Ai
computed with small memory, e.g., M = 10 ·∆t or smaller,
reveal a large variance, they often deviate from their aver-
age Ai and are only little reliable. Thus, there is a tradeoff
between accuracy and timeliness that can be controlled by
UEMA’s memory.

To guarantee timeliness of computed averages, the
smoothing factor a must be low enough. The last m samples
contribute an overall weight of

∑
0≤i<m a

i = 1−am
1−a to the

average while the average contains an overall weight of at
most

∑
0≤i<∞ a

i = 1
1−a . To limit the influence of samples

older than m time steps to a fraction γ, 1−am
1−a ≥

1−γ
1−a must

hold, i.e., a ≤ m
√
γ must be met. Conversely, for a given a,

the impact of samples older than d ln(γ)
ln(a)
e time steps is limited

to γ.

5. MOVING HISTOGRAMS (MH)
A histogram partitions the sample range into k intervals

and associates with each of them a counter bin(i), 0 ≤ i < k.
We denote their lower and upper bound by l(i) and u(i).
We define that the lower bound is part of the preceding
interval and that the upper bound is part of the considered
interval. Left- and rightmost intervals are extended towards
±∞. All bins are initialized with zero. At sample arrival,
the corresponding bin of a cumulative histogram (CumHist)
is incremented by 1. The relative frequency for samples in
a certain interval i can be calculated by

h(i) =
bin(i)∑

0≤j<k bin(j)
. (38)

While other relative frequencies such as h(X ≤ x) can also
be determined by MAs, histograms allow the approximation
of quantiles. The p-quantile Qp is the infimum of values x for
which P (X ≤ x) ≤ p holds. Histograms can approximate it
by

Q̂p = u(i) :
∑

0≤j<i

h(j) < p ≤
∑

0≤j≤i

h(j). (39)



We adapt the concept of MAs to histograms. Moving his-
tograms (MHs) can provide time-dependent quantiles. We
presented an application in [12]. In the following, we discuss
MHs on the base of UEMA and UTEMA.

5.1 MHs for Evenly Spaced Time Series
We present the unbiased exponential moving histogram

(UEMH) which extends UEMA. When a new sample ar-
rives, all bins are devaluated by the smoothing factor a.
Afterwards, the bin associated with the new sample is in-
cremented by 1. Thereby, the contribution of older sam-
ples to the histogram decreases. Relative frequencies are
determined according to Equation (38). A single bin corre-
sponds to UEMA’s Sj and the sum of all bins to UEMA’s
Nj . Properties like contribution C, memory M , and delay
D of UEMA also apply.

This straightforward adaptation requires high multiplica-
tion effort. As an alternative, devaluation may be omitted
and 1

ai
may be used as increment for sample Xi instead of 1.

This causes numerical instability as 1
ai

rises exponentially.
A compromise is to avoid that increments exceed a value η.

To that end, we devaluate bins only after ndev = d− ln(η)
ln(a)

e
steps by a factor 1

andev
and choose ai mod ndev as increment

for Xi.

5.2 MHs for Unevenly Spaced Time Series
The unbiased time-exponential moving histogram

(UTEMH) extends UTEMA. In contrast to UEMH, bins

are devaluated by e−β·(ti−ti−1) instead of a when Xi arrives.
Similarly, increments of size eβ·(ti−t0) may be used instead
of 1

ai
to avoid devaluation of all bins. To avoid numerical

problems, bins are devaluated after tdev = ln(η)
β

time by

e−β·tdev and increments eβ·((ti−t0) mod tdev) are chosen.

Table 5: 10%-quantiles of UEMH with different memory
and cumulative histogram (CH) for samples with increasing
expectations E[Xi].
i 3333 6666 10000

M(∆t) Q10%,i Q̂10%,i Q10%,i Q̂10%,i Q10%,i Q̂10%,i
1 -0.27 -0.89 -0.06 -0.58 +0.18 -0.36
3 -0.75 -0.92 -0.43 -0.55 -0.09 -0.29
10 -0.89 -0.92 -0.53 -0.55 -0.25 -0.26
30 -0.90 -0.92 -0.57 -0.57 -0.29 -0.28
100 -0.93 -0.94 -0.60 -0.60 -0.29 -0.29
300 -0.97 -0.97 -0.63 -0.63 -0.31 -0.31
1000 -1.03 -1.03 -0.71 -0.71 -0.38 -0.39
3000 -1.08 -1.08 -0.85 -0.85 -0.57 -0.58
10000 -1.11 -1.11 -0.93 -0.39 -0.75 -0.75
CH -1.12 -1.11 -0.97 -0.97 -0.83 -0.83

Q10%,i -0.949 -0.615 -0.282

5.3 Timeliness of UEMH and CumHist
We illustrate the timeliness of UEMH with different mem-

ory M and cumulative histograms. We perform the same
experiment as in Section 4.2 and set up histograms with
equal-size ranges between −3 and 1 of width 0.1. Table 5
shows estimates of 10%-quantiles after i samples. They are
computed as average values Q10%,i of 10%-quantiles gained

from nruns = 100 runs or as 10%-quantiles Q̂10%,i based on
the aggregated histogram information after sample i from all
the nruns different runs which is closer to the true value of
the 10% quantile due to reduced variance. However, we see
that both methods yield very similar results for M = 30 ·∆t
or larger. The analytical values are given on the bottom
of the table. They are well approximated by both methods
with memories between 30 and 300 ·∆t. The 10% quantiles

derived from a single run significantly fluctuate, but the val-
ues for Q10%,i show that they yield the right values on av-
erage. The quantiles estimated with cumulative histograms
increase only slowly over time and clearly underestimate the
analytical values. Smaller memory for UEMH cannot hold
enough data for sufficiently accurate calculation of quan-
tiles. MHs with larger memory are too much influenced by
older samples which were generated with lower mean and
cause lower estimates. Thus, there is also a tradeoff between
timeliness and accuracy for MHs.

6. TIME-DEPENDENT RATE MEASURE-
MENT (TDRM)

A rate denotes an average number of samples per time,
possibly weighted by their size. A time-dependent rate re-
flects mainly the recent past of the observed process. We
present various techniques for TDRM and provide a com-
parison. Among the considered methods, TDRM-UTEMA
is new and excels through timeliness, ease of configuration,
and the fact that its measured rates are continuous with
regard to configured memory.

6.1 TDRM Methods
We suggest a framework for the definition of TDRM meth-

ods and present five different instantiations.

6.1.1 A Framework for TDRM Methods
A time-dependent rate Rt at time t may be determined

by

Rt =

{
St
Tt

Tt > 0

0 otherwise
(40)

Tt =

∫ t

0

g(τ − t)dτ (41)

where St is the weighted sample sum, taken from some MA
method, and Tt is the weighted measurement interval which
is computed analogously to St. Measured rates depend on
a time scale which is the duration over which samples are
considered for rate computation. In the presented definition
the time scale is inherited from the memory M of the applied
MA method. Also the concepts contribution C and delay D
are inherited.
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Figure 4: Rate impulses for TDRM-{TWMA, DTWMA-
UEMA, UTEMA} with t→∞ used for calculation of Tt.

6.1.2 TDRM with Time Window Moving Average
(TDRM-TWMA)

TDRM-TWMA calculates the sample sum St according
to Equation (24). The corresponding weighted measure-
ment interval is Tt = min(t,W ) under the assumption that
the measurement process starts at t = 0. The memory is



M = W and the delay is D = W
2

= M
2

. As St may be
zero, measured rates may be zero. TDRM-TWMA requires
temporary storage of the samples within the measurement
window and a timer indicating when the next sample leaves
it. Therefore, the computation memory needed for TDRM-
TWMA scales with the configured memory M and the rate
of the process to be measured.

Figure 4 visualizes rate impulses for different TDRM
methods. TDRM-TWMA generates a rate 1

M
over a du-

ration M for every observed sample of unit size. This rate
can be considered as an impulse and the superposition of im-
pulses from all measured samples (scaled by their size) yields
the measured rate. The figure depicts rate impulses for var-
ious TDRM methods. They have the same memory M but
contribute with a different time-dependent rate impulse to
an overall measured rate. The impulses have an integral of
1 as t → ∞ is assumed for computation of Tt. Superposi-
tion of such impulses ensures that the average of the overall
measured rate approximates the sum of the observed sample
sizes divided by the duration of the observation interval.

6.1.3 TDRM with Disjoint Time Windows Moving
Average (TDRM-DTWMA)

TDRM-DTWMA computes rates for disjoint time win-
dows of duration W . It uses the weighted sum St for
DTWMA in Equation (26) and Tt = W . Memory is M = W
and average delay is D = M . As St may be zero, measured
rates may be zero. In contrast to TDRM-TWMA, TDRM-
DTWMA does not necessarily require storage of samples. It
yields the same rate impulse like TDRM-TWMA, but the
impulse for a sample may become visible only in the next
measurement window.

6.1.4 TDRM with DTWMA and (U)EMA (TDRM-
DTWMA-(U)EMA)

TDRM-DTWMA-(U)EMA calculates rates according to
TDRM-DTWMA and smoothes them with (U)EMA. It is
used in [9] for dequeue rate estimation and requires two pa-
rameters: the window size W and the smoothing parameter
a. The resulting memory is M = W

1−a and the average delay

is D = W
2

+ a·W
1−a + W

2
= M . An advantage of this method

over TDRM-DTWMA is that the effect of measured samples
becomes visible after at most W instead of M time. Fur-
thermore, samples contribute with vanishing degree to all
future measured rates instead of only to the measured rate
of the following measurement window.

The rate impulse starts with rate 1−a
W

= 1
M

and is re-
duced by a factor of a for consecutive measurement inter-
vals of duration W . Again, the rate impulse of a sample may
become visible only at the beginning of the next measure-
ment interval. This takes at most W = M · (1−a) time and
makes TDRM-DTWMA-(U)EMA react faster than TDRM-
DTWMA although they both exhibit the same average
delay. Unlike TDRM-DTWMA-EMA, TDRM-DTWMA-
UEMA does not suffer from a bias towards the measured
rate of the first measurement window.

6.1.5 TDRM with UTEMA (TDRM-UTEMA)
TDRM-UTEMA leverages the weighted sum St of

UTEMA according to Equation (29) and uses the weighted
time

Tt =

∫ t

0

e−β·(t−τ)dτ =
1

β
· (1− e−β·t). (42)

The memory and delay of TDRM-UTEMA are M = D = 1
β

.
The rate impulse of TDRM-UTEMA is an exponentially de-
creasing function. In Figure 4 it is visualized for Tt = 1

β
,

i.e., idealized for t → ∞, and resembles the rate impulse of
TDRM-DTWMA-UEMA. In fact, TDRM-UTEMA can be
viewed as the limit of TDRM-DTWMA-UEMA for decreas-
ing window sizes W .

The advantage of TDRM-UTEMA over TDRM-
DTWMA-UEMA is its immediate reaction and the
need for only a single parameter β. The advantage of
TDRM-DTWMA-UEMA is its computational efficiency
as it does not require the computation of exponential
functions.

6.1.6 TDRM with UTEMA and Continuous Packet
Arrivals (TDRM-UTEMA-CPA)

In [8], the following recursion formula has been applied
for online rate computation:

Rti =


X0
t0

i = 0

e−β·(ti−ti−1) ·Rti−1+ otherwise

(1− e−β·(ti−ti−1)) · Xi
ti−ti−1

. (43)

The start of the measurement period is at t = 0. Later
in this section we show that this recursive formula essen-
tially implements TDRM-UTEMA with the assumption that
packets continuously arrive during their preceding inter-
arrival time instead of arriving instantly at their actual ar-
rival time.

6.2 Comparison of TDRM Methods
We first visualize the results of TDRM-{TWMA,

DTWMA, DTWMA-UEMA, UTEMA} for burst arrivals
with equal inter-arrival times. Then we measure a Poisson
arrival process using different memory. Finally, we show that
TDRM-UTEMA-CPA can be derived from TDRM-UTEMA
and point out its shortcomings.

6.2.1 Measuring a Burst
The bottom line of Figure 5 shows a burst of equal-size

packets arriving with equal inter-arrival times at a rate of
λ= 1

∆t
. Before and after the burst the arrival rate is zero.

The figure illustrates the measured rates for the above men-
tioned TDRM methods, each configured with a memory of
M = 10 ·∆t.

TDRM-TWMA produces a step function that first linearly
increases, reaches a measured rate of 1

∆t
after M = 10 ·∆t

time, stays constant for a while, then linearly decreases, and
reaches zero again after M time. The method exhibits a high
timeliness as the rate increases shortly after the arrival of the
first packet and returns to zero shortly after the arrival of
the last packet.

TDRM-DTWMA reveals a positive rate only with the
start of the next measurement window after the arrival of
the first packet and captures the full rate only one measure-
ment window later. The end of the burst is reflected late by
TDRM-DTWMA’s measured rate.

TDRM-DTWMA-UEMA also yields a step function. Its
measured rate reflects the beginning of the burst earlier than
TDRM-DTWMA since it uses a shorter measurement win-
dow. However, it takes some time to approach the full ob-
served rate of 1

∆t
because it does not completely forget about

the past when no packets arrived. In a similar way, the mea-
sured rate geometrically decreases after the arrival of the last



10 20 30 40 50 60
Time (∆t)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

T
D

R
M

 (
1/

∆
t)

TDRM-TWMA

TDRM-DTWMA

TDRM-DTWMA-UEMA

TDRM-UTEMA

Figure 5: Rate measurement of burst arrivals with constant inter-arrival times ∆t. Packet arrivals are shown on the bottom
of the figure. The TDRM methods are configured with a memory of M = 10 ·∆t. TDRM-DTWMA-UEMA uses a window
of W = 2 ·∆t and a = 4
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.

packet. Therefore, it takes long to approach zero. We used
a measurement window of W = 2 · ∆t for the rate curve
in the figure. A measurement window of W = 2.5 · ∆t al-
ternately covers 2 or 3 arrivals which imposes an oscillating
behavior on the obtained rates although the observed pro-
cess has constant rate. This is a general, undesired artifact
of window-based TDRM methods.

The rate measured by TDRM-UTEMA jumps with every
packet arrival and exponentially decreases in the absence
of new samples. Therefore, its shape at large resembles
the one measured by TDRM-DTWMA-UEMA, but TDRM-
UTEMA does not exibit the above mentioned artefact.

6.2.2 Measuring a Poisson Process
We consider a Poisson arrival process with an arrival rate

of λ = 1
∆t

and equal-size samples over a duration of 106 ·∆t.
A cutout between 40 ·∆t and 240 ·∆t is illustrated in Fig-
ure 6(a). Figures 6(b)–6(e) illustrate time-dependent rates
of this process measured by TDRM-{TWMA, DTWMA,
DTWMA-UEMA, UTEMA} with a memory of M = 20 ·∆t
and M = 40 ·∆t as well as the rate difference between these
curves.

TDRM-TWMA’s measured rate in Figure 6(b) is a step
function and changes whenever a new sample arrives or an
old sample leaves the measurement window. Frequently ar-
riving samples cause rising or high rates while frequently
leaving samples cause falling or low rates. The curves mea-
sured with the longer memory of M = 40 ·∆t are influenced
by the same arriving samples but different leaving sam-
ples compared to the curves measured with shorter mem-
ory. Therefore, the memory has a clear and non-continuous
impact on measured TDRM-TWMA’s rates. The resulting
rate difference is also shown in the figure. We calculate the
average absolute rate difference and denote it by Rabsdiff . It
is given in the captions of the figures and it is relatively
high for TDRM-TWMA. The variance of TDRM-TWMA’s
rate curves is rather high because it computes the rate only
from the small number of samples within its measurement
window. To quantify this observation, we compute the co-
efficients of variation cvar(M) of the rate curves and also
report them in the captions of the figures.

The rate curves for TDRM-DTWMA in Figure 6(c) suf-
fer from the same problems as TDRM-TWMA which is
quantified by Rabsdiff and cvar(M). They behave similarly
as those for TDRM-TWMA but are clearly delayed. Some
low (high) values of TDRM-TWMA are suppressed, e.g.,
between t = 160 · ∆t and t = 180 · ∆t because TDRM-
DTWMA’s few discrete measurement windows comprise
both low- and high-frequent arrivals.

We consider TDRM-DTWMA-UEMA configured with a

window of size 5 ·∆t. Its rates are reported in Figure 6(d)
and are represented by step functions. TDRM-DTWMA-
UEMA’s rates measured with M = 20 ·∆t and M = 40 ·∆t
exhibit significantly less difference compared to TDRM-
TWMA and TDRM-DTWMA because TDRM-DTWMA-
UEMA is continuous with regard to the configured memory.
The measured rates reveal a lower coefficient of variation
because their calculation takes all previous samples into ac-
count.

Rates measured by TDRM-UTEMA are illustrated in Fig-
ure 6(e). They jump at each packet arrival and exponen-
tially decrease in between. They are very similar to those
measured by TDRM-DTWMA-UEMA which exhibit geo-
metric decay in the absence of samples. TDRM-UTEMA’s
rates are also continuous with regard to memory. TDRM-
UTEMA exhibits the least average difference Rabsdiff between
rates measured with different memory. Its rate computation
also respects all past samples and its rates reveal the least
variance among all TDRM methods.

The variance of measured rates decreases for all TDRM
methods with increasing memory. However, the variance
for TDRM-TWMA and TDRM with M = 40 ·∆t is about
as large as the variance for TDRM-DTWMA-UEMA and
TDRM-UTEMA with M = 20 ·∆t.

6.2.3 Comparison of TDRM-UTEMA-CPA and
TDRM-UTEMA

We derive the recursion formula in Equation (43) to point
out its connection with TDRM-UTEMA. We assume that
packets Xi continuously arrive with rate Xi

ti−ti−1
during their

preceding inter-arrival time and partial packets are already
devaluated with passing time τ by e−β·(ti−τ), similar to
Equation (29). As a result, the remaining packet size at
ti is the modified sample size

X∗i =

∫ ti

ti−1

Xi
ti − ti−1

· e−β·(ti−τ)dτ

=
Xi

β · (ti − ti−1)
· (1− e−β·(ti−ti−1)). (44)

An exception is the first modified sample whose size is com-
puted as X∗0 = X0

β·t0
. Application of TDRM-UTEMA to

these modified samples yields TDRM-UTEMA-CPA’s recur-
sion formula in Equation (43). More specifically, the sample
sum in Equation (29) is computed based on X∗i instead of
Xi and Tt = 1

β
is taken as weighted time which is exact for

t→∞. Therefore, TDRM-UTEMA-CPA has only an initial
bias due to the different computation of X∗0 , but does not
exhibit a persistent bias due to its consistency with TDRM-
UTEMA. This is not obvious because Equation (43) looks at
first sight like an application of TEMA to short-term rates
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(b) TDRM-TWMA: Rabsdiff = 0.126, cvar(20 ·∆t) = 0.224, cvar(40 ·∆t) = 0.158

50 100 150 200
Time (s)

0.6

0.8

1.0

1.2

1.4

1.6

M
e
a
su

re
d
 r

a
te

s 
(1
/∆
t)

TDRM-DTWMA (M= 20 ·∆t) TDRM-DTWMA (M= 40 ·∆t) Rate difference

0.4

0.2

0.0

0.2

0.4

R
a
te

 d
iffe

re
n
ce

 (1/∆
t)

(c) TDRM-DTWMA: Rabsdiff = 0.172, cvar(20 ·∆t) = 0.223, cvar(40 ·∆t) = 0.159
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(d) TDRM-DTWMA-UEMA: Rabsdiff = 0.059, cvar(20 ·∆t) = 0.169, cvar(40 ·∆t) = 0.116
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(e) TDRM-UTEMA: Rabsdiff = 0.052, cvar(20 ·∆t) = 0.158, cvar(40 ·∆t) = 0.112

Figure 6: Poisson arrival process and time-dependent rates measured by various TDRM methods with M = 20 · ∆t and
M = 40 ·∆t; coefficient of variations (cvar) of and average deviations Rabsdiff between the two curves are given in the captions.

R∗i = Xi
ti−ti−1

computed at each packet arrival, and TEMA

exhibits both an initial and a persistent bias.
After the initial bias towards X∗0 has vanished, TDRM-

UTEMA-CPA yields rates for arrival instants that are
slightly lower than those of TDRM-UTEMA. While TDRM-
UTEMA yields a piecewise exponentially decaying function,
TDRM-UTEMA-CPA updates rates only at arrival instants
and leads to a step function. The missing decay during inter-
arrival times can overestimate rates over time. To quan-
tify this effect, we measured the rates of a Poisson process
(cvar = 1.0) and an arrival process whose inter-arrival times
have a coefficient of variation of cvar = 2.0. The processes
have an arrival rate of λ = 1

∆t
and take 106 ·∆t time. Ta-

ble 6 shows average rates measured by TDRM-UTEMA and
TDRM-UTEMA-CPA with a memory of M ∈ {10, 100}·∆t.

TDRM-UTEMA does not overestimate rates while the over-
estimation through TDRM-UTEMA-CPA is significant for
short memory M and the arrival process with highly varying
inter-arrival times.

Table 6: Average rates measured by TDRM-
{UTEMA,UTEMA-CPA}.

cvar(A) = 1.0 cvar(A) = 2.0

Memory M 10 ·∆t 100 ·∆t 10 ·∆t 100 ·∆t
TDRM-UTEMA 1.000 1.000 1.000 1.000
TDRM-UTEMA-CPA 1.048 1.005 1.186 1.020

6.3 Summary
We have proposed a framework for TDRM. We consid-

ered four methods from literature and a novel one: TDRM-
UTEMA. Only TDRM-TWMA and TDRM-UTEMA im-
mediately reflect rate changes in measured time-dependent



rates. In contrast, TDRM-DTWMA and TDRM-DTWMA-
UEMA take some time until rate changes become visi-
ble. Thereby, TDRM-DTWMA-UEMA uses shorter mea-
surement windows than TDRM-DTWMA and exponential
smoothing so that it can react faster to rate increases than
TDRM-DTWMA. For small measurement windows, rates
measured by TDRM-DTWMA-UEMA converge to those
measured by TDRM-UTEMA. While TDRM-TWMA and
TDRM-DTWMA yield measurement curves with high vari-
ance, TDRM-UTEMA and TDRM-DTWMA-UEMA ex-
hibit clearly lower variance when being configured with the
same memory because they average over all past samples.
While time-dependent rates measured by TDRM-DTWMA-
UEMA and TDRM-UTEMA are continuous with regard
to configured memory, rates measured by TDRM-TWMA
and TDRM-DTWMA significantly depend on the config-
ured memory. This makes TDRM-TWMA and TDRM-
DTWMA more difficult to interpret and use. The novel
TDRM-UTEMA is the only of these studied methods (1)
whose measured rates are continuous with regard to mem-
ory and (2) immediately react to rate changes, (3) which can
be configured by a single parameter, and (4) which cannot
not produce window-based artifacts. Therefore, its mea-
sured rates depend least on the chosen memory. Neverthe-
less, the two-parametric TDRM-DTWMA-UEMA can pos-
sibly serve as a less computation-intensive approximation of
TDRM-UTEMA. We showed that TDRM-UTEMA-CPA is
a variant of TDRM-UTEMA but may overestimate rates.

7. CONCLUSION
We have presented a framework for the definition of mov-

ing averages (MAs) including performance metrics like mem-
ory and delay. We presented several MA variants for evenly
and unevenly spaced time series, showed that they fit well
into that framework, and demonstrated that some of them
have a bias. We proposed the unbiased exponential MA
(UEMA) and the unbiased time-exponential MA (UTEMA)
as novel MA methods that avoid such a bias. We config-
ured MA methods such that they revealed the same memory
and produced comparable results. Our analysis of UEMA
showed that the memory allows for a tradeoff between accu-
racy and timeliness when mean values are determined. We
also suggested some equations that help to choose appropri-
ate smoothing parameters when UEMA should provide av-
erage values with a certain accuracy. We discussed moving
histograms (MHs) as an extension of MAs and showed how
they may be used to determine quantiles. Finally, we ex-
tended the framework to time-dependent rate measurement
(TDRM). We embedded four existing TDRM methods in
that framework and suggested TDRM-UTEMA as a novel
method that excels by its timeliness, ease of configuration,
and by the fact that its measured rates continuously depend
on the configured memory. We performed experiments to
illustrate and compare these TDRM methods and pointed
out their pros and cons.

We presented a demo of all methods discussed in this work
at [19] and made the source code available at [20].

This work focused on online measurement, i.e., on the
assumption that future samples of the measured process are
unknown. It has applicability in self-adaptive systems. The
work may be extended to offline measurement so that time

series can be smoothed while taking both past and future
samples into account when calculating averages, histograms,
or time-dependent rates.
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