
VITO: VIrtual Testbed Orchestration for Automation of
Networking Experiments

Andreas Stockmayer, Christian Kindermann, Michael Menth
Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany

{andreas.stockmayer,menth}@uni-tuebingen.de,christian.kindermann@student.uni-tuebingen.de

CCS CONCEPTS
• Networks→ Network experimentation;

ACM Reference Format:
Andreas Stockmayer, Christian Kindermann, Michael Menth. 2017. VITO:
VIrtual Testbed Orchestration for Automation of Networking Experiments.
In ,. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3150928.
3150954

1 INTRODUCTION
In computer networking research, simulation, emulation, and hard-
ware testbeds are used to implement new protocols and control
mechanisms and evaluate their performance. With simulation, net-
work control is easy and it is convenient to perform large exper-
iments. However, a challenge is to correctly model complex pro-
tocols like various TCP variants with sufficient accuracy and to
validate them. Some simulators allow the integration of real Linux
network stacks [15], but this is bound to certain operating system
versions that are currently not up to date which is a problem for
testing latest protocol enhancements. Highly complex communi-
cation technologies may take long simulation times if modelled
on a low level. Network emulators interconnect real devices over
a simulated network which can be easily configured. An exam-
ple is NetSim [26]. Network emulators generally can support only
low networking speeds so that only limited experiments can be
conducted. Highspeed experiments are not possible.

Experimentation on hardware testbeds allows application of orig-
inal protocol stacks and real protocol implementations. However,
hardware testbeds are heavy-weight solutions. If an experiment is
large in terms of nodes, it requires lots of physical hardware, ad-
ministration overhead. Experimentation on hardware is expensive,
requires lots of space, energy, i.e., large overhead is involved, and
it lacks configuration flexibility. In addition, separate management
tools are needed to efficiently leverage different kinds of hardware.

Another solution are networking experiments in a virtualized
environment. The nodes of an experiment are modeled by virtual

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-1. The authors alone are responsible
for the content of the paper.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
VALUETOOLS 2017, 11th EAI International Conference on Performance Evaluation
Methodologies and Tools
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6346-4/17/12.
https://doi.org/10.1145/3150928.3150954

machines (VMs) which may run any operating system. This facil-
itates evaluation of latest protocol stacks. Communication links
between the VMs may be modelled with appropriate characteristics
such as rate, delay, buffer sizes, packet loss, and possibly jitter.

There are a few frameworks for network experimentation in
virtualized environments, e.g., Mininet [14]. They allow virtual
interconnection of virtual nodes, but they do not provide detailed
control over link characteristics, which is essential for performance
evaluation.

In this paper we describe a platform for VIrtual Testbed Orches-
tration (VITO) that supports automation of networking experiments
on a single server for the purpose of performance evaluation. A
major contribution is the automation framework and the configura-
tion of virtual links using the Linux tool TC. We use netem to add
delay and a token bucket filter (tbf) to model bandwidth and buffer
size. We give recommendations for configuration and application
examples.

The paper is structured as follows. In Section 2 we give an
overview of related work. We describe VITO in Section 3. In Sec-
tion 4, we experimentally analyze various configuration options
for TC and give recommendations for configuration. Section 5 sum-
marizes this work.

2 RELATEDWORK
In this section, we briefly review other testbed orchestration tools.
There are several commercial testbed orchestrators for both vir-
tual and physical testbeds. We describe Mininet for its prevalence,
Spirent Velocity [24] as an example for high-efficiency, the TRI-
ANGLE project [10] as an example for technology-specific experi-
mentation, Virtual Wall [5] as an example for large scale testing,
and VMSimInt as an example for fully virtualized machines in a
simulated network.

2.1 Mininet
The most widely known testbed environment is Mininet. It was
developed for SDN testing, especially in connection with Open-
Flow [16]. Mininet emulates multiple nodes and links on a single,
local machine. The nodes run in different name spaces, but share the
same kernel. Their virtual interfaces are directly connected to a soft-
ware switch. The Mininet approach is very lightweight with regard
to memory and computation overhead. Configuration flexibility is
limited because the configuration of the host applies to all virtual
nodes. Due to their weak separation, the nodes can influence each
other. Mininet is often used for testing of various SDN protocols
and for demonstration purposes. This does not require accurate
modelling of link behaviors. Network interfaces are all on the same
host and transmission are realized as memory copies. Since version

2

https://doi.org/10.1145/3150928.3150954
https://doi.org/10.1145/3150928.3150954
https://doi.org/10.1145/3150928.3150954


2.0, Mininet also supports bandwidth and delay options. Never-
theless, it does not implement real separate networking stacks so
that we cannot rely on Mininet to reveal the same quantitative
behaviour as real hardware and software.

2.2 Spirent Velocity
Spirent Velocity is a testbed orchestrator aiming at high utilization
of available resources. The concept comes with a virtualization
environment and a software manager schedules tests on physical
or virtual testbeds. As the experimentation platform is proprietary,
validation of experimental results is difficult. The objective of VITO
is not high utilization of involved hardware, but separation of vir-
tualized nodes to avoid performance impacts.

2.3 TRIANGLE Project
The TRIANGLE project is funded by the European Commission
under the Fire+ initiative and runs over three years from 2016 until
2018. It offers a 5G testbed for app developers, mobile operators,
and device makers. The testbed provides special hardware for the
emulation of mobile links because it focuses on 5G operation. The
resources can be leveraged from remote for experimental purposes.
The objective of VITO is to use the resources of a local server for
testing protocols on layer 2 and higher.

2.4 Virtual Wall
Virtual Wall is a large scale testing environment consisting of 300
physical nodes which can be used with any operating system in
any topology. The link characteristics are modeled in software
using special FreeBSD [27] nodes. This approach offers the same
flexibility as VITO but at a higher hardware cost since every node
is a physical server. Since the links are also modeled in software
this approach is not more accurate than VITO.

2.5 VMSimInt
VMSimInt [32] is a tool developed to integrate arbitrary kernels in
a discrete event simulator. The approach includes a conventional
discrete event simulator to simulate the underlying network and a
modified version of QEMU [18] for virtualization of guest machines.
The source code of QEMU has to be altered to forward all interupts
from the guest system to the network simulator which then adds
them as simulation events. The advantage of this system is the full
integration of VMs in existing simulation environments with all
benefits of a real system. The drawback is that the simulation speed
decreases significantly. All VMs have to be emulated in software
since the clock is altered and the VMs only work as simulation
events in the simulator. The drawback of this solution is the poor
performance of emulated machines which is significantly lower
than hardware assisted VMss. The performance of this solution
degrades with the number of VMs included, therefore it is only
suitable for small testbeds.

3 VIRTUALIZED TESTBED
ARCHITECTURE AND EXPERIMENTATION
METHODOLOGY

We first give an introduction into VITO’s virtualized testbed archi-
tecture and experimentation methodology. We report the virtual-
ization environment and explain how experiments are orchestrated
and executed with VITO. We explain some optimizations for faster
generation of virtualized testbeds. We describe the integration of
physical network interfaces and their virtualization, which may be
useful for some experiments. Finally, we show how link character-
istics can be modelled using the Linux tool TC.

3.1 Introduction and Overview
Figure 1 gives an overview of the experimentation methodology.
Physical nodes like end systems or routers are modelled by VMs and
connected via one or more IEEE 802.1d [4] software bridges through
virtual interfaces (vIFs). We call those VMs node VMs (NVMs) and
the bridges experiment bridges (EBs). Possibly, additional auxiliary
VMs (AVMs) may be used in the experiment to act as routers or
switches. NVMs and AVMs are jointly denoted as experiment VMs
(EVMs). A single managing VM (MVM) is connected to all EVMs in
the testbed via a managing bridge (MB). The MVM orchestrates the
virtual testbed consisting of EBs and EVMs, controls experiments,
records the results and provides them for download, and finally
removes the virtual testbed.

Figure 1: Experiments are executed with node and auxiliary
VMs (NVMs, AVMs) that are interconnected by experiment
bridges (EBs). NVMs and AVMs are denoted as experiment
VMs (EVMs). A managing VM (MVM) is connected via a sin-
gle managing bridge (MB) to EVMs.

3.2 VITO’s Virtualization Platform
We use a server with an Intel Xeon processor as a physical machine
and GNU/Linux as host system. We leverage the Intel VT-x [6]
feature to enable hardware-accelerated virtualization of the x86
platform as x86 by itself is not virtualizable. We use Linux Kernel-
based Virtual Machine (KVM) [11] as hypervisor which supports
VT-x. VMs are created based on QEMU and are managed using the
libvirt [20] framework. Software bridges are directly run on the
host using the respective 802.1d Linux kernel module. Figure 2 visu-
alizes this concept. In comparison to software emulated machines

3



like in VMSimInt this enables nearly native performace for every
machine [31].

Figure 2: Virtualization experimentation platform.

3.3 Orchestration of Experiments
The experimentation platform itself has only the MVM and the
MB running on top of a normal Linux as hypervisor system. The
experimenter requires only access to the MVM but not to the host
machine itself, i.e., he can create a virtualized testbed and perform
experiments without root permissions on the host. Furthermore,
he has a single point for the collection of experimental results.

An XML-based file is used for experiment description and con-
trol. The file comprises the configuration of all EVMs and EBs, the
configuration of the network, and commands that need to be issued
at specified times on the VMs. First, the MVM efficiently creates
the testbed VMs using libvirt leveraging an XML-based template
for VM creation. The CPU pinning option in the VM configura-
tion may be activated to ensure that the VM is run on one CPU
thread exclusively. This is helpful for EVMs running CPU-intense
computations to ensure they have sufficient resources. Every EVM
is equipped with a hard disk that is a snapshot of a template VM
which will be described in Section 3.5.

The template foresees a single uplink interface per EVM which
is assigned a random MAC address after creation. dnsmasq [22]
assigns them IP addresses and makes them reachable via their host
nameswhich are configured in the description. As a result, theMVM
can connect the EVMs via SSH and execute specified commands.
TheMVM creates required EBs, further interfaces on the EVMswith
randomly generated MAC addresses, assigns them IP addresses,
and connects them to the corresponding EBs. udev [12] rules are
installed to rename interfaces according the description. Firewall
rules are installed to prevent the usage of the uplink interface for
other purposes than communication with the MVM.

For the purpose of a centralized data management, a Network
File System (NFS [21]) server is installed on the MVM. This allows
all EVMs to write data to a shared directory.

3.4 Execution of Experiments
After creation and configuration of all EVMs and EBs, the experi-
ment is started by executing experimentation commands specified

in the experiment description. These may include comprehensive
log operations, e.g., tcpflow [23] may log TCP state variables during
experimentation and tcpdump [25] may log network activity on all
non-uplink interfaces of EVMs. They need to be started prior to the
actual experimentation and application log files may be moved to
the NFS mount after completion. The actual experiment consists
of a set of commands that are supposed to be executed at specified
time instants after experiment start. For instance, a server process
may be started on one EVM at the beginning of the experiment
and clients are started slightly later on other EVMs. Commands
may also change EVM configuration during the experiment, e.g.,
for modifying link bandwidths or simulating link failures. The vir-
tual testbed is deleted after each experiment to avoid undesired
side effects on future experiments. After deletion of the testbed,
the MVN still has access to the entire data collection on the NFS
mount, compresses the data, and provides it for download as a
zipped tar-file.

3.5 Optimized Testbed Generation
Copying the hard disk consumes the major time fraction of EVM
generation and deletion. Tominimize this overhead, we use qcow2 [19]
as an overlay disk image for VMs which is supported by qemu.With
qcow2, all blocks initially refer to a read-only base image. If a block
is written, a modified copy is stored in a qcow file. During an ex-
perimentation, only little data on the disk image is modified, in
particular as logs are stored on the NFS mount. Thereby, qcow2 is
very efficient and saves lots of copying overhead. As a result, the
whole process of creating and deleting a virtual testbed takes less
than a minute.

3.6 Integration and Virtualization of
Physical NICs

So far, we have only considered the use of virtual interfaces. How-
ever, physical network interface cards (NICs) may provide special
optimizations like TCP segmentation offloading (TSO) [30]. With
VT-d [8], PCI devices can be passed-through from the host to the
VM. Therefore, it may be used to pass-through a physical NIC to a
VM.

VT-c [7] comprises Virtual Machine Device Queues
(VMDq) [9] which enables multiple queues per NIC, i.e., a single
physical NIC (physical function, PF) is virtualized into multiple
virtual NICs (virtual functions, VFs). VT-d in conjunction with
Single Root I/O Virtualization (SR-IOV) [17], the virtual NICs can
be passed-through to VMs. To that end, hardware-dependent kernel
parameters need to be set to enable all required features. In addition,
libvirt has to be configured to use a special pass-through method.

With physical or virtual NICs, a VM’s interface is connected to
the NIC device instead of the software switch.

3.7 Modelling Characteristics of
Transmission Links

The Linux tool TC [13] offers access to netem (networkemula-
tor) [28] to modify the characteristics of a network interface. netem
adds constant or variable delay to packets and packets may be be
randomly dropped or duplicated. TC also provides tbf [29] which
implements rate control for egress traffic on an interface. tbf shapes

4



a traffic stream according to a token bucket while enforcing a max-
imum latency. The token bucket is configured with a rate and a
burst size. That means, tbf generates tokens at the configured rate,
saves them up to its configured burst size, and forwards packets as
soon as sufficient tokens are available. Packets that cannot be sent
are queued and the latency parameter determines the maximum
queue size in time. As an alternative, the queue size can also be con

gured in bytes. If the number of tokens suffice, several packets
can be forwarded at once.

The burst size is usually configured as a small multiple of a
maximum transfer unit (MTU). We apply first netem and then tbf
to all non-uplink interfaces of EVMs with parameters defined in the
experiment description. For further details we refer to Section 4.

3.8 Scalability Considerations and
General Applicability

The scalability of VITO depends on the host hardware. A typical
server machine has up to 12 cores per CPU on which up to 24 CPU
threads are supported. Thus, it suffices to equip one MVM and 23
EVMs with exclusive CPU threads. EVMs with only little CPU load
do not need an own CPU thread so that the number of EVMs in the
experiment may be even larger.

Any operating system may be used on EVMs if it supports SSH
and NFS. Our release of VITO already provides a few Linux VM
images for immediate use. However, own VM templates can be
created by installing an operating system and provide an NFSmount
and the ssh key for key login from the manager.

The orchestrator can be started with a list of experiments and
can run multiple experiments from the queue at the same time as
long as there are enough available unused CPU cores.

4 PERFORMANCE ANALYSIS WITH VITO
In this section, we investigate various uses of netem and tbf for link
modeling and quantify appropriate rate-specific burst sizes for tbf
configuration.

4.1 Modeling Link Characteristics
VITO uses the Linux tool TC to model link characteristics. With
netem, constant or variable delay may be added to individual pack-
ets and random packet drops, reordering, or duplication can be
realized. With tbf, a maximum data rate of the link can be enforced
by delaying and dropping packets while respecting a configurable
buffer size. Also active queue management (AQM) algorithms like
random early detection (RED) [3] can be modelled with tbf. The
two tools netem and tbf can be applied both to a single outgoing
interface, but the properties of the resulting stream depend the
application order.

In the following we use netem only for adding constant packet
delay so that application order is expected to be irrelevant. We
demonstrate plausible results for application order netem/tbf and
show that application order tbf/netem does not work properly. As
a workaround we propose the introduction of an auxiliary node
so that netem/tbf and tbf/netem can be applied to a traffic stream
on consecutive outgoing links which again yields plausible results.
Finally, we experimentally show that the addition of an auxiliary
node hardly impacts achievable throughput.

4.1.1 Combined Application of netem/tbf on a Single Link. We
investigate the impact of the application order of netem and tbf on
a single link. A web client (curl) [1] on one NVM communicates via
a vIF and a software bridge with a web server (busybox httpd) [2]
on another NVM with a vIF. The guest OS uses the Linux Kernel 4.8
with TCP Cubic. The client downloads via http/TCP a 100 MB file
from the web server. TCP’s state variables are logged with tcpflow
and the packet stream is monitored with tcpdump for analysis.

In a first experiment, the following two commands are applied
to interface eth1 to configure it with external parameters that are
passed via the %s placeholders:

t c q d i s c add dev e th1 r oo t hand le 1 : 0 \
netem de l ay %sms %s c o r r u p t i o n %s l o s s \
%s r e o r d e r i n g %s

t c q d i s c add dev e th1 pa r en t 1 : 1 \
hand le 1 0 : t b f r a t e %sMbi t b u r s t %s \
l a t e n c y %sms

The netem command effects that the packet stream is modified with
delay (ms), jitter (%), corruption (%), loss (%), and reordering (%). In
our experiments, only the delay is set to 100 ms and all other values
are zero. The tbf command effects that the packet stream is spaced
according to a token bucket with configured rate (Mb/s), burst size
(bytes), and latency (ms). This roughly models a transmission link
with the specified rate and a buffer size of rate · latency/1000. In
the following, we set rate = 50 Mb/s, burst = 4542 bytes, and
latency = 50 ms. In a second experiment, the application order of
netem and tbf is interchanged. We apply the same configuration
for transmission from the client to the server and vice-versa.

Table 1: Performance metrics for a download of a 100 MB
filewith netem/tbf and tbf/netem configured on a single link
with bandwidth of 50 Mb/s.

tool download goodput avg. CWND avg. RTT
order time (Mb/s) (MSS) (ms)

netem/tbf 19.7s 40.6 821 231
tbf/netem 19.3s 41.5 2013 427

Table 1 summarizes the results. While download time and good-
put are rather similar for both application orders, packet loss, avg.
TCP congestion window size (CWND), and avg. roundtrip time
(RTT) differ significantly. For further analysis, we consider CWND
and RTT over time which is illustrated in Figure 3. With netem/tbf,
the RTT varies between 200 ms and 250 ms, and the CWND be-
tween 500 and 1050. In particular, CWND and RTT decrease after
the occurrence of a lost packet. This is different with tbf/netem as
no packet is lost. As a result, the CWND increases up to a maximum
value of 2300 MSS and the RTT oscillates between 420 and 520 ms.
RTTs in this order of magnitude are unexpected because the con-
figured transmission and queueing delays can range only between
200 ms and 300 ms. Thus, the application order tbf/netem causes
undesired behavior and should be avoided for experimentation.

4.1.2 Application of netem/tbf on Consecutive Links. We now
interconnect the client and the server NVM via another AVM and
software bridge. The configuration is illustrated in Figure 4 for

5



Figure 3: TCP’s congestion window and roundtrip time for
a single TCP flow on a link with 100 ms delay, a bandwidth
of 50 Mb/s, and a buffer with a maximum latency of 50 ms;
tbf’s burst size is configured with 4500 bytes.

the application order tbf/netem. Thus, netem/tbf or tbf/netem are
applied to consecutive links instead to a single one. The client and
server NVM see only single links with combined properties.

Figure 4: tbf/netem is configured individually on two con-
secutive links through introduction of an additional EB and
AVM that just forwards traffic.

Table 2 reports the experimentation results which hardly differ
from the experiment with netem/tbf. The same holds for CWND
and RTT over time for which figures are omitted. Thus, netem/tbf
may be applied together on a single outgoing interface. If tbf/netem
is the desired application order, an auxiliary node may be used to
ensure correct behavior.

Table 2: Performance metrics for a download of a 100 MB
file with netem/tbf and tbf/netem individually configured
on two consecutive links.

application download goodput avg. CWND avg. RTT
order time (Mb/s) (MSS) (ms)

netem/tbf 19.1s 41.8 834 224
tbf/netem 18.9s 42.3 845 229

4.1.3 Impact of Auxiliary Nodes for Delay Addition. An addi-
tional AVMmay add some delay. We show that this delay is so small
that it hardly influences experimentation results. To that end, we
perform similar experiments like above but deactivate rate control
and add a delay of 0 ms and 1 ms, respectively. We perform the
experiments 20 times. Table 3 summarizes the utilization. Even
without any base delay, the presence of the AVM is hardly visible
by the increased download time and with a base delay of 1 ms, the
download time is almost the same. Thus, AVMs add so little delay
that it cannot even be perceived for small positive base delay.

Table 3: Download time for various configurations depend-
ing on one-way delay with a configured bandwidth of 100
Mb/s and a 100 MB file size.

delay w/o AVM w/ single AVM w/ jLISP
0 ms 8.68s 8.70s 9.21s
1 ms 8.72s 8.73s 9.22s

4.2 Configuration of Rate-Specific Burst Sizes
We first think of a simple rate controller that ensures a maximum
bit rate of C . After transmission of a packet with size B, it trans-
mits the next packet not earlier than after B

C time. If the machine
performs that task only slightly late, this reduces the maximum
achievable data rate. To cope with the problem of late transmission,
tbf uses a token bucket description for spacing. tbf continuously
generates tokens and saves them in a bucket which is limited by
its burst size. Packets are queued for transmission. A packet is sent
if the number of tokens in the bucket is at least the packet size. If
the number of tokens does not suffice, the machine retries again
when enough additional tokens have arrived. On the one hand,
this mechanism assures that transmission capacity is not lost if
a packet is sent slightly later than possible, on the other hand it
allows transmission of multiple packets so that packet bursts may
be transmitted. Therefore, the burst size should be set only so large
that the full transmission capacity can be leveraged, but also as
little as possible to keep bursts small as the intention of a spacer is
a smooth traffic stream.

In the following we evaluate the required burst size for various
bandwidths. Figure 5(a) compiles the utilization for various burst
sizes for a server NVM with little CPU load. The figure shows that
large bandwidths require large burst sizes to minimize download
times by fully leveraging the configured bandwidth. We perform
the same experiment with a server NVM that performs other tasks
in parallel so that its CPU load is close to 100%. The results in
Figure 5(b) show that almost the same download time values are
achieved because TC is granted high priority. Both experiments
were repeated 100 times which resulted in a confidence interval
of less than one percent in each direction for an alpha value of
0.95. We derive from Figure 5(b) recommendations about minimum
burst sizes for specific values of configured bandwidths that are
needed so that the full transmission speed can be achieved with
tbf. We summarize these values in Table 4. The values may depend
on software and hardware. Especially with different Linux kernel

6



(a) Idle server with an avg. CPU load of 2%.

(b) Busy server with an avg. CPU load of 98%.

Figure 5: Impact of configured burst sizes on utilization de-
pending on configured bandwidths.

versions a different behavior could occur which leads to adaptions
for the VITO systems since both the kernel and iproute2 are under
active development.

Table 4: Recommended burst size for various values of con-
figured bandwidth.

bandwidth (Mb/s) burst size (MTU)
<= 10 3
<= 50 4
<= 100 5
> 100 7

5 CONCLUSION
In this paper we proposed the VIrtual Testbed Orchestration (VITO)
platform which allows automation of real-world networking exper-
iments on a single server. Physical or virtual hardware components
like additional hosts or NICs may be integrated for even more
realistic experiments. Networking nodes are modelled by virtual
machines (VMs), leveraging hardware virtualization technologies,
that are interconnected by software bridges and link characteristics
are enforced by the Linux tool TC. The supportable experiment size
in terms of networking nodes depends on the server machine, a
lower bound is one networking node per CPU thread. VITO node
VMs can accommodate any guest operating systems with SSH and
NFS support. An experimental performance analysis showed how
netem and tbf needs to be configured for modelling link charac-
teristics demonstrated that the overhead of auxiliary VMs tends
toward zeros, and gave recommendations for the configuration of
burst sizes.

REFERENCES
[1] Daniel Stenberg . 2017. cURL. https://curl.haxx.se/. (2017).
[2] Denys Vlasenko et al. 2017. BusyBox. https://busybox.net/. (2017).
[3] Sally Floyd and Van Jacobson. 1993. Random Early Detection Gateways for

Congestion Avoidance. IEEE/ACM Trans. Netw. (Aug. 1993).
[4] IEEE Computer Society. 2004. IEEE 802.1D Standard.

http://standards.ieee.org/getieee802/download/802.1D-1998.pdf. (2004).
[5] iMinds. 2014. Virtual Wall – Generic Test Environment For Advanced Network,

Distributed Software and Service Evaluation, and Scalability Research. (2014).
http://www.iminds.be/en/develop-test/ilab-t/virtual-wall

[6] Intel Corp. 2006. Intel Virtualization Technology (VT-x). (2006).
[7] Intel Corp. 2012. Intel Virtualization Technology for Connectivity (VT-c). (2012).
[8] Intel Corp. 2012. Intel Virtualization Technology for Directed I/O (VT-d) Archi-

tecture Specification. (2012).
[9] Intel LAN Access Division. 2008. Intel VMDq Technology. Whitepaper. INTEL.
[10] Keysight Technologies. 2017. Triangle Project. http://www.triangle-

project.eu/project/. (2017).
[11] Avi Kivity et al. 2007. KVM: The Linux Virtual Machine Monitor. In Ottawa

Linux Symposium.
[12] Greg Kroah-Hartman. 2003. udev – A Userspace Implementation of devfs. In

Ottawa Linux Symposium.
[13] Alexey Kuznetsov and Stephen Hemminger. 2012. iproute2: Utilities for Control-

ling TCP/IP Networking and Traffic. (2012).
[14] Mininet Project. 2017. Mininet. http://mininet.org/. (2017).
[15] ns-3 project. 2015. ns3 Direct Code Execution.

https://www.nsnam.org/overview/projects/direct-code-execution/. (2015).
[16] Open Networking Foundation members. 2016. OpenFlow Switch Specification.

(2016).
[17] PCI SIG. 2010. Single Root I/O Virtualization and Sharing Specification 1.1.

(2010).
[18] QEMU team. 2014. QEMU 2. http://wiki.qemu.org/ChangeLog/2.0. (2014).
[19] QEMU Team. 2017. qcow2. http://git.qemu-project.org. (2017).
[20] Red Hat. 2012. libvirt: The Virtualization API. http://libvirt.org. (2012).
[21] S. Shepler et al. 2003. Network File System (NFS) version 4 Protocol. RFC 3530.

(April 2003).
[22] Simon Kelley. 2017. dnsmasq. http://www.thekelleys.org.uk/dnsmasq/doc.html.

(2017).
[23] Simson L. Garfinkel. 2017. tcpflow. https://github.com/simsong/tcpflow. (2017).
[24] Spirent. 2017. Spirent Velocity. https://www.spirent.com/Products/velocity.

(2017).
[25] Tcpdump Team. 2017. Tcpdump. http://tcpdump.org. (2017).
[26] TETCOS. 2017. NetSim. http://tetcos.com/. (2017).
[27] The FreeBSD Project. 2017. FreeBSD. www.freebsd.org. (2017).
[28] The Linux foundation. 2017. netem. https://wiki.linuxfoundation.org/networking/netem.

(2017).
[29] The Linux foundation. 2017. tbf. https://linux.die.net/man/8/tc-tbf. (2017).
[30] The Linux foundation. 2017. tso. https://wiki.linuxfoundation.org/networking/gso.

(2017).
[31] VMware. 2009. Performance Evaluation of Intel EPT Hardware Assist. https :

//www .vmware .com/pdf /Per fESXIntel − EPT − eval .pdf . (2009).
[32] Thomas Werthmann et al. 2014. VMSimInt: A Network Simulation Tool Support-

ing Integration of Arbitrary Kernels and Applications (SIMUTools ’14).

7

http://www.iminds.be/en/develop-test/ilab-t/virtual-wall

	1 Introduction
	2 Related Work
	2.1 Mininet
	2.2 Spirent Velocity
	2.3 TRIANGLE Project
	2.4 Virtual Wall
	2.5 VMSimInt

	3 Virtualized Testbed Architecture and Experimentation Methodology
	3.1 Introduction and Overview
	3.2 VITO's Virtualization Platform
	3.3 Orchestration of Experiments
	3.4 Execution of Experiments
	3.5 Optimized Testbed Generation
	3.6 Integration and Virtualization of Physical NICs
	3.7 Modelling Characteristics of Transmission Links
	3.8 Scalability Considerations and General Applicability

	4 Performance Analysis with VITO
	4.1 Modeling Link Characteristics
	4.2 Configuration of Rate-Specific Burst Sizes

	5 Conclusion
	References



