
c©Springer, 19th International GI/ITG Conference on Measurement, Modelling and Evaluation of
Computing Systems (MMB). This is an author's version of the work with permission of Springer.

Not for redistribution.

De�cit Round Robin with Limited De�cit Savings
(DRR-LDS) for Fairness among TCP Users

Michael Menth, Marcel Mehl, and Sebastian Veith

University of Tuebingen, Chair of Communication Networks,
Sand 13, 72076 Tuebingen, Germany

{menth@,marcel.mehl@student.,sebastian.veith@}uni-tuebingen.de

Abstract. De�cit Round Robin (DRR) is a simple and computationally
e�cient approximation of the Weighted Fair Queueing (WFQ) schedul-
ing discipline. Its intention is to share resources among several queues,
e.g., �ows or users, according to given weights. However, when users
hold di�erent numbers of TCP connections with saturated sources, the
throughput among these users may di�er signi�cantly.

In this work, we quantify the di�erence in throughput for heavy and light
users with saturated TCP �ows for equal weights and for two di�erent
bu�er management strategies. The di�erence is large if low queueing
delay for packets is enforced through shallow bu�ers on the bottleneck
link. To address this shortcoming, we propose limited de�cit savings
(LDS), a modi�cation of the DRR scheduler, which can be combined
with di�erent bu�er management schemes. We show that LDS reduces
unequal throughput for heavy and light users with saturated TCP �ows.
Moreover, we illustrate that LDS clearly decreases download times for
data chunks of moderate size in the presence of high background load.

Keywords: Congestion management, scheduling, fairness, bu�er management

1 Introduction

De�cit Round Robin (DRR) [28] is a computationally e�cient approximation
of the Weighted Fair Queuing (WFQ) scheduler. It serves several packet queues
and allocates to them the capacity of a single server, e.g., the bandwidth of
a communication link, according to con�gurable weights. In particular, DRR
respects packet sizes so that queues cannot obtain larger capacity shares by
sending larger packets.

While fair allocation of transmission bandwidth has been the focus for many
years, low delay has recently become more important. Drivers for low-delay

The authors acknowledge the funding by the Deutsche Forschungsgemeinschaft
(DFG) under grant ME2727/2-1. The authors alone are responsible for the content
of the paper.



transmission in the Internet and communication networks in general are real-
time applications like voice over IP, video conferencing, �nancial applications,
and gaming. Several specialized working groups in the Internet Engineering Task
Force (IETF) work on mechanisms to reduce delay and congestion in the Inter-
net: ConEx [16], RMCAT [17], and AQM [15]. The FP7 project RITE pur-
sues that objective [1] and the Internet Society organized two workshops in this
area [18,19]. An overview to reduce Internet latency is given in [5].

If low packet delay is desired with WFQ or DRR, some packets are dropped
if the bu�er holds too many of them. Such a drop decision is part of the bu�er
management schemes. We basically consider two strategies: drop-on-enqueue and
drop-on-dequeue. As TCP is still the predominant transport protocol in the
Internet, we investigate the transmission of saturated TCP sources. Heavy users
may have more TCP connections than light users. We show that both considered
bu�er management methods do not lead to equal bandwidth allocation among
heavy and light users if low delay is enforced.

A major reason for that phenomenon is the fact that in the DRR algorithm a
queue does not bene�t in the resource allocation process while it is empty. This
problem increases with tighter delay requirements. To mitigate that problem, we
propose limited de�cit savings (LDS) as an extension to DRR so that queues can
collect credits during short periods of inactivity between the last packet sent and
the next packet arrived. We evaluated this mechanism under various conditions.
To that end, we implemented variants of DRR in the INET simulation framework
of OMNeT++ [30] and performed multiple experiments.

The paper is structured as follows. Section 2 explains the DRR algorithm,
reviews existing work about DRR and WFQ, active queue management (AQM),
and distinguishes our approach from other activities. Section 3 introduces the
LDS extensions for DRR. Section 4 explains the experimental setup and discusses
simulation results. Section 5 summarizes this work and draws conclusions.

2 Related Work

In this section, we brie�y introduce WFQ and some of its variants and explain
the DRR algorithm. We introduce the notion of bu�erbloat, point out several
AQM methods, and distinguish these e�orts from our approach.

2.1 Weighted Fair Queueing and Variants

In 1985, John Nagle discussed the bene�ts of a round robin scheduling sys-
tem [23] which was later called fair queueing (FQ). The approach was enhanced
by Demers et al. [6] and by Zhang [36] towards a logical bit-by-bit fair scheduler
which became known as Weighted Fair Queueing (WFQ). The introduction of
weights allows for unequal resource allocation of capacity to di�erent queues.
In 1995, Shreedhar and Varghese proposed the De�cit Round Robin (DRR)
scheduler [28], which approximates WFQ but is computationally less demand-
ing. Other improved approximations followed like the Worst-case Fair Weighted

2



Fair Queueing (WF2Q) which utilizes the start time of packets additionally to
the �nish time to enhance accuracy, or WF2Q+ which improved accuracy and
reduced complexity [4].

2.2 DRR Algorithm

We now describe DRR in more detail as it is the base for our study. With
DRR, queues are associated with weights and the objective of the DRR is to
assign the capacity of a server or bandwidth of a link to the active queues in
the system according to these weights. A queue is active if it stores a packet,
otherwise it is inactive. The queues are administered in an active list and a set of
inactive queues. If a packet arrives for an inactive queue, the queue is removed
from the set of inactive queues and appended to the end of the active list. The
active queues are served in the following manner. Every queue is associated
with a de�cit counter. The de�cit counter of the �rst queue from the active list
is incremented by a quantum, which is an amount of bytes, multiplied by the
weight associated with that queue. If the de�cit counter is at least as large as
the size of the �rst packet in the queue, the de�cit counter is decreased by the
size of that packet, and that packet will be sent next. This process continues
until the de�cit counter is not large enough to send the next packet or until the
queue is empty. The queue is then removed from the active list. If it still holds
packets, it is appended again to the end of the active list, otherwise it is added
to the inactive set and the de�cit counter is reset to zero. Then the process of
assigning a quantum to the �rst queue in the active list and sending packets
continues. DRR uses a shared bu�er for all queues. If there is no space left in
the bu�er upon arrival of a new packet, a packet of the longest queue is dropped.
This bu�er management is called McKenney's bu�er stealing algorithm [22]. In
the following we refer to it as drop-on-enqueue.

2.3 Bu�erbloat

Su�ciently large bu�ers are needed under certain conditions to achieve good
bandwidth utilization on networking hardware [7, 8], but if they are �lled for
relatively long time, packets experience excessive and unnecessary delay. This
phenomenon is called bu�erbloat [10], i.e., excessive packet delay due to large
and unmanaged bu�ers. The general problem behind bu�erbloat was already
described in 1985 by John Nagle [23]. Quantitative evaluations showed that
bu�erbloat is not ubiquitous and its impact may be limited [3, 14]. Bu�erbloat
in cellular networks has been studied in [20].

2.4 Active Queue Management

Active queue management (AQM) is a class of bu�er management schemes that
counteract incipient congestion by dropping or marking packets before the queue
is fully occupied. A classic scheme is Random Early Detection (RED) [9] that

3



drops packets with a probability rising with the recent average queue occupation.
With explicit congestion noti�cation (ECN), packets are rather marked instead
of dropped, but ECN is applicable only if TCP sources indicate to reduce their
tra�c rate in response to appropriate congestion signals from TCP receivers
[27]. The PIE controller is an enhanced AQM whose packet drop probability
depends on growing and shrinking average queue sizes [26]. It is already applied
for DOCSIS systems [35] [33] [34, Annex M]. The Controlled Delay (CoDel)
AQM [24,25] is currently proposed as a countermeasure against bu�erbloat and
already integrated in many stacks. It is extended towards FQ-CoDel [13] by
combining it with DRR and Stochastic Fair Queueing (SFQ) [22] so that low-rate
�ows within a tra�c aggregate do not su�er excessive delay due to competing
high-rate �ows. Various new AQMs have been compared in [21], and [2] reviews
a multitude of AQMs that have been discussed in the past. Interactions between
AQMs and low-priority congestion control have been investigated in [11,12]. The
authors of [29] have considered various bu�er management strategies together
with per-�ow queueing strategies in Gigabit routers.

2.5 Our Approach

In our work we consider a scheduler with multiple queues, one for a speci�c
aggregate that we call a user in the following. Each user may have multiple �ows
and the objective of the scheduler is to enforce a resource allocation to queues
according to con�gured weights. This is typically achieved by WFQ. However,
another goal is to keep packet delay low which is the objective of AQM or
bu�er management mechanisms. We try to achieve low delay with DRR with
simple bu�er management strategies and to understand their impact. FQ-CoDel
is close to our approach in the sense that it keeps delays low and uses DRR, but
it uses SFQ to isolate �ows of a single user in di�erent queues. Of course, CoDel
could be easily modi�ed for per-user queueing. The objective of our work is
the enhancement of DRR by LDS from which other mechanisms like FQ-CoDel
could also pro�t.

3 Limited De�cit Savings for DRR

With DRR, the de�cit counters of queues are increased only if they hold at least
a single packet; otherwise they are not respected for the resource allocation pro-
cess. However, when low latency is enforced in the presence of multiple queues,
queues are likely to hold no packet most of the time even though the system
is fully utilized. As a consequence, queues with less frequent packet arrivals are
disadvantaged in competing for the capacity share given by the weights. This
problem arises for TCP tra�c.

Our idea is to allow an empty queue to increase its de�cit counter up to a
de�cit saving limit Dmax. At the next packet arrival, the queue does not need to
wait for a de�cit increase but can be served preferentially within a set of queues
that have enough de�cit to send packets. We describe this DDR-LDS algorithm
in the following.

4



3.1 State Classi�cation of Queues

A queue is fresh if it is empty and if its de�cit counter D equals Dmax. All
fresh queues are kept in the �fresh list� F . A queue is eligible if it holds at
least one packet and if its de�cit counter D is at least as large as the size B
of its �rst packet so that this packet could be sent. All eligible queues are kept
in the �eligible list� E . An empty queue is collecting if its de�cit counter D is
smaller than Dmax. A non-empty queue is collecting if its de�cit counter D is
smaller than the size of its �rst packet B so that this packet cannot be sent. All
collecting queues are kept in the �collecting list� C. Figure 1 depicts how queues
move from one list to another if their state changes. The states of the queues in
the respective lists are indicated in the circles. The algorithms in the following
describe how these state changes are triggered and when the queues are moved.

Fig. 1. A queue belongs to the fresh, eligible, or collecting list depending on its state.
Queues are moved from one list to another during the execution of DRR-LDS.

3.2 Packet Enqueue

If a packet arrives, it is appended to its queue. If the queue was fresh before
packet arrival, it is removed from F and appended to E . If the queue was empty
and in C before, it may need to be removed from C and appended to E , depending
on its new state. If the link is idle after a packet arrival, a packet may be
immediately dequeued for transmission as described in the next paragraph.

3.3 Packet Dequeue

If a packet is needed for transmission and E is not empty, the algorithm removes
the �rst packet of the �rst queue in E . If that packet will be dropped for some

5



reason and if the queue is empty afterwards, the queue is removed from E and
appended to C or F depending on the queue classi�cation criteria. If the packet
will be transmitted, the queue is removed from E , its de�cit counter is decreased
by the packet size, and the queue is appended to E or C, depending on its new
state. This procedure repeats until a packet for transmission is found or until E
is empty. In the latter case the de�cit will be increased as described in the next
paragraph.

3.4 De�cit Increase

If E is empty, the de�cit counters of queues in C are increased until E is no longer
empty or until C itself is empty. To that end, the de�cit counter of the �rst queue
in C is increased by the quantum multiplied by the queue's weight, but the de�cit
counter cannot exceed Dmax if the queue is empty. Then, the queue is removed
from C and then appended to F , E , or C. This procedure repeats until C is empty
or until E becomes non-empty. In the latter case, packet dequeue is resumed.

3.5 Some Observations

Queues can collect de�cit only if no queue is eligible. If the bu�er runs empty,
all queues become fresh again. FQ-CoDel implements a similar mechanism that
is described in [13]. However, with FQ-CoDel the time empty queues take to
become fresh again is independent of Dmax. With DRR-LDS the time an empty
queue needs to become fresh again does depend on Dmax.

4 Performance Evaluation

We �rst describe the simulation setup. Then we show that DRR cannot enforce
equal bandwidth allocation in the presence of heavy and light users with TCP
tra�c and low latency requirements. We demonstrate that DRR-LDS reduces
this unequal bandwidth allocation and leads to fast downloads of short transac-
tions for certain bu�er management schemes.

4.1 Experiment Setup

We implemented DRR and DRR-LDS in combination with two bu�er manage-
ment strategies based on the INET framework [30] for the discrete-event simu-
lator OMNeT++ [31]. As we do not trust INET's TCP implementation, we use
the Network Simulation Cradle [32] based on which INET allows to integrate
Linux networking stacks for TCP New Reno and Cubic.

Figure 2 illustrates our simulation setup. A set of �users� is connected to one
router over a fast link with a bandwidth of Ca = 1 Gb/s and a one-way propaga-
tion delay of Da = 1 µs. This router connects to a server over a slow bottleneck
link with a bandwidth of Cb = 10 Mb/s and a one-way propagation delay of
Db = 5 ms or Db = 50 ms, respectively. Thus, the transmission time of a packet

6



Fig. 2. Simulation setup.

with an average size of 1500 bytes takes 1.2 ms. We apply DRR or DRR-LCS
for this bottleneck link and assign equal weights to all users. We con�gured the
DRR with a quantum of 1500 bytes. The experiments use saturated TCP con-
nections, i.e., there is always data to send. The TCP connections start randomly
within the �rst second of a simulation run and statistic collection starts only
after 5 s to avoid transient e�ects. If not mentioned di�erently, each simulation
run is repeated 100 times.

4.2 Bu�er Management Schemes

We consider two bu�er management schemes for a shared bu�er: drop-on-enqueue
and drop-on-dequeue.

Drop-on-enqueue is the strategy originally proposed with DRR: if a packet
arrives and the bu�er is fully occupied, the oldest packet of the longest queue is
dropped. Thereby, the packet delay can be controlled by the bu�er size SB .

Drop-on-dequeue is inspired by new AQMs like CoDel, but we pursue a very
simple approach. A packet is dropped if it is older than a con�gurable delay
threshold TD. This method limits the packet delay to TD and removes packets
from the queue in case of congestion. Nevertheless, the bu�er can over�ow under
certain conditions. To avoid that, we postulated a su�ciently large bu�er and
assumed in�nite for the sake of simplicity.

7



4.3 Resource Allocation with DRR

The objective of this experiment is to test whether DRR can enforce an intended
resource allocation in the presence of many users so that DRR queues run empty.
We consider n = 40 active users, 5 heavy users holding 10 TCP connections
with the server and 35 light users holding only a single TCP connection with the
server. With FIFO scheduling, we expect ratios of 10:1 for achieved transmission
rates of heavy and light users assuming TCP's per-�ow fairness is perfect. With
DRR scheduling we expect equal transmission rates of 0.25 Mb/s for heavy and
light users.

(a) Drop-on-enqueue.

(b) Drop-on-dequeue.

Fig. 3. Throughput and packet queueing delay for heavy users (HU) and light users
(LU). Results are shown for TCP New Reno and Db = 5 ms.

Figure 3(a) shows the throughput and packet queueing delay of heavy and
light users with TCP New Reno connections for drop-on-enqueue bu�er man-
agement and with Db = 5 ms on the bottleneck link. The x-axis shows the

8



bu�er size and the y-axes the throughput and packet queueing delay of each
user type. For bu�er sizes between 15 and 40 packets, heavy users achieve sig-
ni�cantly larger transmission rates than light users. This is undesired insofar
as both heavy and light users have saturated sources an should share the link
equally. The queueing delay for packets rises about linearly with the bu�er size
and its mean reveals that about 5

6 of the queue is occupied on average. Thus, the
queue is often �lled which is due to the relatively high load. For very large queue
capacity, we observe shorter delays for heavy users than for light users. As DRR
with drop-on-enqueue requires 50 packets to achieve equal bandwidth allocation
for competing TCP users in our setting, it cannot enforce both fairness and low
or moderate delay under heavy load.

Figure 3(b) presents similar results for drop-on-dequeue. The x-axis shows
the delay threshold TD instead of the bu�er size SB ; the range [6;120] ms is
chosen because that corresponds to the transmission times of a packet range
[5;100] which was used for drop-on-enqueue in Figure 3(a). For drop-on-dequeue
we observe even larger di�erences in throughput for heavy and light users, in
particular for small delay thresholds. A delay threshold of TD = 90 ms is needed
to achieve equal bandwidth allocation for heavy and light users which results in
almost 40 ms average packet delay for both user types. With drop-on-dequeue,
packet queueing delay rises about linearly with the delay threshold TD and is
similar for heavy and for light users due to the absence of bu�er stealing. It is
about half the delay threshold TD in our experiments. With drop-on-enqueue, the
queue length cannot exceed SB but the bu�er was mostly fully occupied, which
is not shown in the �gures. For drop-on-dequeue the bu�er size was not limited.
Nevertheless, the measured average queueing delay linearly increased from zero
(for TD = 0 ms) to 50 ms (for TD = 120 ms). Thus, the average queueing
delay for drop-on-dequeue is signi�cantly lower than the corresponding average
queueing delay for drop-on-enqueue.

We performed the same experiments with Db = 50 ms and obtained almost
the same results. For TCP Cubic we received di�erent results but the same
conclusion: large queue capacity is needed for fair bandwidth sharing.

4.4 Resource Allocation with DRR-LDS

We evaluate the e�ect of limited de�cit savings (LDS) on the throughput of
heavy and light users. We �rst consider drop-on-enqueue for a bu�er size of
SB = 20 packets to keep queueing delay short. The x-axis in Figure 4(a) shows
the de�cit saving limit Dmax and the y-axes show again the throughput and
packet queueing delay of heavy and light users with TCP New Reno connections
on a bottleneck link with a Db = 5 ms. We observe that the throughput for
heavy and light users signi�cantly deviates for very small values of Dmax but
the di�erence vanishes for values Dmax ≥ 10. We explain this phenomenon by
the fact that at the beginning of a congestion phase when the bu�er is �lled,
the heavy users quickly consume their de�cit. This gives priority to packets of
light users when they arrive. Also during congestion periods, light users can save
de�cit whenever heavy users receive de�cit to send further packets although they

9



(a) Drop-on-enqueue for SB = 20 packets.

(b) Drop-on-dequeue for TD = 24 ms.

Fig. 4. Throughput and packet queueing delay for heavy users (HU) and light users
(LU) with LDS. Results are shown for TCP New Reno and Db = 5 ms.

do not have packets to send. When tra�c is shared about equally, the queueing
delay is about 20 ms and for heavy users slightly larger than for light users.

Figure 4(b) shows similar data for drop-on-dequeue for which a delay thresh-
old of TD = 24 ms is chosen that corresponds to the transmission time of 20
packets. The di�erence in throughput between heavy and light users is even
larger than for drop-on-enqueue. It is again decreased by an increasing value
for the de�cit saving limit Dmax. A de�cit saving limit of Dmax = 6 is already
enough to achieve perfect fairness. Packet queueing delay is about 10 ms and for
heavy users slightly larger than for light users.

We also performed these experiments with Db = 50 ms and obtained almost
the same results. For TCP Cubic we received di�erent results. In particular, with
drop-on-enqueue, light users achieved signi�cantly larger throughput than heavy
users, but light users experienced also clearly more packet delay. In contrast,

10



drop-on-dequeue leads to a very similar queueing behavior as in Figure 4(b) for
TCP New Reno.

Thus, drop-on-dequeue with DRR-LDS seems an interesting approach to
maximize fairness between heavy and light users with TCP �ows when low la-
tency is required.

(a) Drop-on-enqueue for SB = 20 packets.

(b) Drop-on-dequeue for TD = 24 ms.

Fig. 5. Download time of a data chunk of 100 kB for an infrequent user in the presence
of heavy background tra�c. The 20 other users have 5, 10, or 20 saturated TCP
connections. Results are shown for TCP New Reno and Db = 5 ms.

4.5 Download Times with DDR-LDS

We consider the download time of an infrequent user sending small data bursts
of 100 kB in the presence of a heavy load situation. The infrequent user holds a
single TCP New Reno connection to download a data chunk of 100 kB for which

11



the duration is measured. The 20 other users hold 5, 10, and 20 connections
in di�erent experiments. The TCP connections of the 20 other users are satu-
rated, constitute the background load, and start within the �rst second of the
experiment. The infrequent user starts its download after 5 s. Each experiment
is repeated 100 times. With perfect fairness the download time for 100 kB is 1.68
s under the assumption that TCP can initially send already su�ciently fast.

We �rst consider the download time for drop-on-enqueue con�gured with a
bu�er size of SB = 20 packets. Figure 5(a) shows the download time for the
infrequent user depending on the de�cit saving limit Dmax. The download time
is almost independent of the background tra�c. Small de�cit saving limits Dmax

lead to a slight increase in download time, but larger Dmax clearly decreases the
download time below 1.68 s. Thus, a reduction of download time through LDS
is visible but rather modest. The same results are obtained for Db = 50 ms and
for TCP Cubic.

To study drop-on-dequeue, we use a delay threshold of TD = 24 ms. Fig-
ure 5(b) shows that without LDS (Dmax = 0) the infrequent user's download
time is signi�cantly larger than for drop-on-enqueue. Larger background loads
lead to longer download times without LDS, i.e., 4.8 s when the other users hold
5 connections each, 5.5 s when they hold 10 connections each, and 5.9 s when
they hold 20 connections each. With very little de�cit saving limit Dmax, the
di�erence in download time already vanishes. With even larger de�cit saving
limit Dmax the download time decreases to less than 0.4 s. This is a signi�cant
speedup even compared to the fair download time of 1.68 s. Very similar results
are obtained for Db = 50 ms and for TCP Cubic.

Thus, LDS in combination with DRR can expedite transactional tra�c in the
presence of heavy background load, with both the drop-on-enqueue or the drop-
on-dequeue bu�er management strategy. For drop-on-dequeue the reduction of
download time is very high.

5 Conclusion

In this work we have shown that DRR cannot achieve equal bandwidth allocation
to heavy and light users that have di�erent numbers of saturated TCP �ows,
in particular if low delay is enforced through shallow bu�ers. A reason for this
phenomenon is that empty queues do not pro�t in DRR's bandwidth allocation
process. If low delay is enforced, even queues with active TCP �ows are empty
for quite some time so that it is hard for them to get their full bandwidth share.
Therefore, we modi�ed the DRR algorithm such that empty queues are respected
for the bandwidth allocation process in DDR and can save de�cit to a limited
extent. We called this mechanism limited de�cit savings (LDS) and refer to the
modi�ed DDR algorithm as DDR-LDS. Our simulation results demonstrated
the throughput di�erences between heavy and light users and revealed that they
are larger for drop-on-dequeue than for drop-on-enqueue and for TCP New Reno
than for TCP Cubic. We showed that LDS signi�cantly reduces these di�erences.
Moreover, LDS clearly decreases download times of light users for both bu�er

12



management strategies whereby the e�ect for drop-on-dequeue is larger than for
drop-on-enqueue.

The study points at potential unfairness with DRR under low-delay con-
straints for TCP users. More research is needed to understand how DRR-LDS
a�ects other tra�c types, tra�c mixes, and how the performance depends on
networking parameters that typically in�uence TCP throughput. Moreover, mea-
surements are needed to evaluate whether the investigated scenario is rather a
corner case or whether the DRR-LDS scheduler is able to solve practical prob-
lems. Nevertheless, a variant of LDS can be identi�ed in FQ-CoDel so that the
presented mechanism has practical relevance and should be understood.

References

1. FP7 Project (STREP): Reducing Internet Transport Latency (RITE) (Nov 2012
� Nov 2015)

2. Adams, R.: Active Queue Management: A Survey. IEEE Communications Surveys
& Tutorials 15(3), 1425�1476 (2013)

3. Allman, M.: Comments on Bu�erbloat. ACM SIGCOMM Computer Communica-
tion Review 43(1) (Jan 2013)

4. Bennett, J.C., Zhang, H.: WF2Q : Worst-Case Fair Weighted Fair Queueing. In:
IEEE Infocom (1996)

5. Briscoe, B., Brunstrom, A., Petlund, A., Hayes, D., Ros, D., Tsang, I.J., Gjessing,
S., Fairhurst, G., Griwodz, C., Welzl, M.: Reducing Internet Latency: A Survey
of Techniques and their Merits. to appear in IEEE Communications Surveys &
Tutorials (2016)

6. Demers, A., Keshav, S., Shenker, S.: Analysis and Simulation of a Fair Queuing
Algorithm. In: ACM SIGCOMM (1989)

7. Dhamdhere, A., Dovrolis, C.: Open Issues in Router Bu�er Sizing. ACM SIG-
COMM Computer Communication Review 36(1), 87�92 (Jan 2006)

8. Dhamdhere, A., Jiang, H., Dovrolis, C.: Bu�er Sizing for Congested Internet Links.
In: IEEE Infocom. Miami, FL (Mar 2005)

9. Floyd, S., Jacobson, V.: Random Early Detection Gateways for Congestion Avoid-
ance. IEEE/ACM Transactions on Networking 1(4), 397�413 (Aug 1993)

10. Gettys, J., Nichols, K.: Bu�erbloat: Dark Bu�ers in the Internet. ACM Queue
9(11) (Nov 2011)

11. Gong, Y., Rossi, D., Leonardi, E.: Modeling the Interdependency of Low-Priority
Congestion Control and Active Queue Management. In: International Teletra�c
Congress (ITC) (2013)

12. Gong, Y., Rossi, D., Testa, C., Valenti, S., Taht, M.D.: Fighting the Bu�erbloat:
on the Coexistence of AQM and Low Priority Congestion Control. In: IEEE IN-
FOCOM Workshop on Tra�c Measurement and Analysis (2013)

13. Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys, J., Dumazet, E.:
RFC8290: The Flow Queue CoDel Packet Scheduler and Active Queue Manage-
ment Algorithm. https://tools.ietf.org/html/rfc8290 (Jan 2018)

14. Hohlfeld, O., Pujol, E., Ciucu, F., Feldmann, A., Barford, P.: Bu�erBloat: How
Relevant? A QoE Perspective on Bu�er Sizing. Tech. Rep. 2012-11, TU Berlin,
Faculty of Electrical Engineering and Computer Science (Nov 2012)

13



15. IETF Working Group on Active Queue Management and Packet Scheduling
(AQM): Description of the Working Group. http://tools.ietf.org/wg/aqm/charters
(2013)

16. IETFWorking Group on Congestion Exposure (CONEX): Description of theWork-
ing Group. http://tools.ietf.org/wg/conex/charters (2010)

17. IETFWorking Group on RTPMedia Congestion Avoidance Techniques (RMCAT):
Description of the Working Group. http://tools.ietf.org/wg/rmcat/charters (2012)

18. Internet Society: Bandwidth Management � In-
ternet Society Technology Roundtable Series.
http://www.internetsociety.org/sites/default/�les/BWroundtable_report-1.0.pdf
(Nov 2012)

19. Internet Society: Report on the Workshop on Reducing Internet Latency.
http://www.internetsociety.org/latency2013 (Dec 2013)

20. Jiang, H., Liu, Z., Wang, Y., Lee, K., Rhee, I.: Understanding Bu�erbloat in Cel-
lular Networks. In: Workshop on Cellular Networks: Operations, Challenges, and
Future Design (CellNet) (Aug 2012)

21. Khademi, N., Ros, D., Welzl, M.: The New AQM Kids on the Block: Much Ado
About Nothing? Tech. Rep. Technical Report 434, University of Oslo, Dept. of
Informatics (2013)

22. McKenney, P.E.: Stochastic Fairness Queueing. In: IEEE Infocom (1990)
23. Nagle, J.: RFC970: On Packet Switches with In�nite Storage (Dec 1985)
24. Nichols, K., Jacobson, V., McGregor, Ed., A., Iyengar, Ed., J.: RFC8289: Con-

trolled Delay Active Queue Management. https://tools.ietf.org/html/rfc8289 (Jan
2018)

25. Nichols, K., Jacobson, V.: Controlling Queue Delay. ACM Queue 10(5) (May 2012)
26. Pan, R., Natarajan, P., Piglione, C., Prabhu, M.S., Subramanian, V., Baker, F.,

VerSteeg, B.: PIE: A Lightweight Control Scheme to Address the Bu�erbloat Prob-
lem. In: IEEE Workshop on High Performance Switching and Routing (HPSR)
(2013)

27. Ramakrishnan, K., Floyd, S., Black, D.: RFC3168: The Addition of Explicit Con-
gestion Noti�cation (ECN) to IP (Sep 2001)

28. Shreedhar, M., Varghese, G.: E�cient Fair Queuing Using De�cit Round Robin.
IEEE/ACM Transactions on Networking 4(3), 375 � 385 (Jun 1996)

29. Suter, B., Lakshman, T.V., Stiliadis, D., Choudhury, A.K.: Bu�er Management
Schemes for Supporting TCP in Gigabit Routers with Per-�ow Queueing. IEEE
Journal on Selected Areas in Communications 17(6), 1159 � 1169 (Jun 1999)

30. Varga, A.: INET-2.2 released. http://inet.omnetpp.org/ (Aug 2013)
31. Varga, A.: OMNeT++ 4.3.1 released. http://www.omnetpp.org/ (Sep 2013)
32. Wand, S.: Network Simulation Cradle. http://research.wand.net.nz/software/nsc.php

(2012)
33. White, G., Pan, R.: RFC8034: Active Queue Management (AQM) Based on Pro-

portional Integral Controller Enhanced (PIE) for Data-Over-Cable Service Inter-
face Speci�cations (DOCSIS) Cable Modems. https://tools.ietf.org/html/rfc8034
(Feb 2017)

34. White, G.: Data-over-Cable Service Interface Speci�cation � MAC and Upper Layer
Protocols Interface Speci�cation. Tech. Rep. CM-SP-MULPIv3.1-I01-131029, Ca-
ble Television Laboratories, Inc. (Oct 2013)

35. White, G.: Active Queue Management in Docsis 3.X Cable Modems. Tech. rep.,
Cable Television Laboratories, Inc. (May 2014)

36. Zhang, L.: VirtualClock: A New Tra�c Control Algorithm for Packet Switching
Networks. In: ACM SIGCOMM (1990)

14


