
©Springer, 19th International GI/ITG Conference on Measurement, Modelling and Evaluation of Computing Systems
(MMB). This is an author’s version of the work with permission of Springer. Not for redistribution.

FunSpec4DTMC – A Tool for Modelling Discrete-Time
Markov Chains Using Functional Specification

Frederik Hauser, Dominik Krauß, and Michael Menth

University of Tuebingen, Chair of Communication Networks,
Sand 13, 72076 Tuebingen, Germany

{frederik.hauser,menth}@uni-tuebingen.de
johannes-dominik.krauss@student.uni-tuebingen.de

Abstract. We present a tool for the analysis of finite discrete-timeMarkov chains
(DTMCs). As a novelty, the tool offers functional specification of DTMCs and
implements forward algorithms to compute the stationary state distribution xs of
the DTMC or derive its transition matrix P [19]. In addition, we implement nine
direct and indirect algorithms to compute various metrics of DTMCs based on
P including an algorithm to determine the period of the DTMC. The tool is in-
tended for both production purposes and as platform for teaching the functional
specification of DTMCs. It is published under GPLv3 [3] on Github [2].

1 Introduction
Discrete-time Markov chains (DTMCs) are a widely applied concept for system mod-
elling. Typically, DTMCs are defined by a stochastic matrix P that holds probabili-
ties for transitions among system states. The vector xn describes the state distribution
of a system after n transitions. Consecutive distribution vectors xn are calculated by
xn+1 = xn ⋅ P . The stationary state distribution fulfills xs = xs ⋅ P . It reflects the aver-
age state distribution after multiple transitions and is a useful base for the derivation of
further specific performance metrics. Theoretical background of DTMCs is described
in [21,22]. There are many scientific analysis tools [6,13,14,16–18,23] and libaries for
the field of teaching [6, 20]. All utilize the transition matrix P as the base for analysis.

In this work, we present a tool for modelling DTMCs with a finite state space us-
ing the novel functional specification suggested in [19]. We introduce the functional
specification by an example. We consider a two-dimensional constraint random walk
on a grid with coordinates (a, b) and integer values a ∈ {Amin, ..., Amax} =  and
b ∈ {Bmin, ..., Bmax} = . The walk starts at position (Amin, Bmin). In any transition,
the position may change horizontally by integer values  = {Hmin, ...,Hmax} and ver-
tically by  = {Vmin, ..., Vmax}, all with equal probability. We consider the system with
Amin = Bmin = 1, Amax = Bmax = 3, Hmin = Vmin = −1, and Vmax = Hmax = 1.
It can be modelled by a two-dimensional state space  =  ×  and a factor space
 =  ×  with  =  = {−1, 0, 1}. The random variables Xn = (An, Bn) ∈ 
describe the position of the walk after n transitions. Given a random factor for the move
Y = (H,V) ∈  , the next position (An+1, Bn+1) ∈  of the walk is determined by

An+1 = min(Amax, max(Amin, An +H)) (1)
Bn+1 = min(Bmax, max(Bmin, Bn + V)). (2)

This is a stochastic recursive equation that constitutes the state transition function of
the system f ∶  ×  →  . Together with the distribution y of the factor space 
this function constitutes a DTMC [19]. A so-called forward algorithm may be used to
compute consecutive state distributions xn based on this description without the use of
a transition matrix P . The transition matrix P can be derived by a similar algorithm so
that other analytical methods can be applied to it.

Figure 1(a) shows all states of the randomwalk with potential transitions. Figure 1(b)
illustrates the state transition matrix. The stationary state distribution yields xs(i) =

1
9

for any i ∈  .

(a) State space and potential transitions.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) 4
9 ,

2
9 , 0, 2

9 ,
1
9 , 0, 0, 0, 0

(1,2) 2
9 ,

2
9 ,

2
9 ,

1
9 ,

1
9 ,

1
9 , 0, 0, 0

(1,3) 0, 2
9 ,

4
9 , 0, 1

9 ,
2
9 , 0, 0, 0

(2,1) 2
9 ,

1
9 , 0, 2

9 ,
1
9 , 0, 2

9 ,
1
9 , 0

(2,2) 1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9

(2,3) 0, 1
9 ,

2
9 , 0, 1

9 ,
2
9 , 0, 1

9 ,
2
9

(3,1) 0, 0, 0, 2
9 ,

1
9 , 0, 4

9 ,
2
9 , 0

(3,2) 0, 0, 0, 1
9 ,

1
9 ,

1
9 ,

2
9 ,

2
9 ,

2
9

(3,3) 0, 0, 0, 0, 1
9 ,

2
9 , 0, 2

9 ,
4
9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b) State transition matrix P.

Fig. 1: Random walk example.

The functional specification might appear more complex, but provides many ben-
efits. First, it allows intuitive modelling of systems with event-triggered state transi-
tions. Events are modelled by factors whose probabilities are described by the factor
distribution. The system’s state transition in case of particular events is described by
the transition function. Therefore, the functional specification is close to the system’s
behaviour which facilitates modelling of complex systems with even multi-dimensional
state spaces. Second, the functional specification allows the modelling of very large
DTMCs. The conventional specification requires the transition matrix P which scales
quadratically with the number of states. For very large DTMCs, the resulting size of
P may be so large (multiple Terabytes) that DTMC analysis based on P may become
infeasible. Sparse matrix representation may reduce memory requirements, but its ef-
fectiveness depends on the specific use case. With the functional specification, the tran-
sition matrix is not needed for the analysis of the DTMC and memory requirements are
reduced to the state and factor distribution. The memory requirement for the state tran-
sition function is generally small. In [19] further optimization methods are described to
speed up the convergence of the consecutive state distributions based on the functional
description.

FunSpec4DTMC implements the functional specification and the forward algorithm
to calculate consecutive state distributions xn and the transition matrix P . Besides, the

tool offers various direct and iterative computation methods to calculate metrics for
DTMCs that are based on P . In particular, the period of finite DTMCs can be derived
and methods for output visualization are provided.

The paper is structured as follows. In the next section, we present the core idea and
features of FunSpec4DTMC. Section 3 describes the architecture and implementation.

2 Tool Description

FunSpec4DTMC consists of a library implementing the functionality and a graphical
user interface (GUI) that allows users to analyse DTMCs in an interactive process. The
four phases of FunSpec4DTMC’s analysis process for DTMCs are depicted in Figure 2.

Phase I:
Model definition

GUI-based dialogue or file-based input
Conventional specification of DTMCs
Functional specification of DTMCs

Conventional specification
Parsing and input validation, visualization of the
initial state vector and transition matrix

Phase II:
Input processing

Calculation of the stationary state xs

Phase III:
Computation
of DTMC metrics

General
State distribution function, cumulative state distribution function,
complementary cumulative state distribution functionPhase IV:

Output
visualization of
DTMC metrics

Calculation of the
transition matrix P
Based on the forward
algorithm using the
functional specification

Specific output: random walk
Random walk, evolution of state averages,
evolution of probabilities for selected states

Specific output: forward algorithm
Transition matrix

Direct algorithms
Gaussian elimination
algorithm,
inverse iteration

Based on transition
matrix P

Iterative algorithms
MC random walk, limiting
distribution, cesàro limit,
modified cesàro limit and
matrix powering

Based on transition matrix P
or forward algorithm using
the functional specification

Calculation of the
period p
Based on transition
matrix P or forward
algorithm using the
functional specification

GUI-based input for the in-built
GI[GI]/ D/1-Qmax - system DTMC example
System specification
Generation of time distributions

Functional specification
Parsing and input validation, visualization of the
initial state vector, factor distribution,
and transition function

Fig. 2: Four phases of FunSpec4DTMC’s analysis process for DTMCs.

In the first phase (I), the DTMC model is defined by the user. DTMCs can be either
defined in a GUI-based input dialogue or imported from JSON project files. As an ex-
ample for intuitive modelling of DTMCs, our tool offers a system specification dialogue
for a GI [GI]∕D∕1 −Qmax queuing system.

In the second phase (II), the DTMC model input is parsed and validated against
mistakes in the specification, e.g., state probability vectors that do not sum up to 1. In
addition, aspects of the DTMC model such as the initial state vector can be visualized.

In the third phase (III), metrics for DTMCs are calculated. If the DTMC is defined
in a conventional way using the transition matrix P , multiple direct and iterative com-
putation algorithms can be applied. The former are accurate and fast but require a large
amount of memory. Examples are the Gaussian elimination algorithm and the inverse
iteration. The latter requires less memory but lots of iterations to compute the stationary

state distribution with high accuracy. The tool offers the following iterative methods to
approximate the stationary state distribution xs:

– DTMC random walk (simulation)
– calculation of the limiting distribution (lim

n→∞
xn) (applicable to aperiodic DTMCs)

– matrix powering (lim
n→∞

P n) (applicable to aperiodic DTMCs and to DTMCs with a
period of 2n, n ∈ ℕ0)

– calculation of the Cesàro limit (lim
n→∞

1
n+1

∑n
i=0 xi)

– modified calculation of the Cesàro limit (lim
n→∞

1
p
∑

n≤i<n+p xi) as introduced in [19].
To that end, the tool analyzes transition structures of the DTMC and computes its
period p.

With a functional specification of a DTMC, the tool computes consecutive state
distributions xn and DTMC simulations without the state transition matrix P and uses
for this purpose the forward algorithm or just the state transition function f , respectively.
Moreover, the state transition matrix P can be derived from the functional specification
based on another forward algorithm [19].

In the fourth phase (IV), the output of the DTMC analysis can be visualized. That
includes the visualization of general metrics, e.g., the stationary state distribution, and
the visualizations of particular computation algorithm specifics, e.g., the random walk.

3 Architecture and Implementation

The architecture of FunSpec4DTMC is based on the model-view-controller (MVC) pat-
tern that separates its functionality from the GUI. We designed an object-oriented class
hierarchy and applied design patterns, e.g., the observer or strategy pattern [15], and
language constructs, e.g., the signal-and-slot approach [10].

We chose Python in version 3.6.3 [8] as programming language. We use Matplotlib
[4] to generate plot figures and SciPy [11] to import common distributions. To ap-
ply SciPy’s continuous distributions on DTMCs, we implemented mechanisms for dis-
cretization and normalization. We implemented the GUI using PyQt5 [7], the Python
bindings to the widely applied GUI framework Qt [9]. It is platform-independent and
allows the creation of more advanced graphical surfaces compared to simple approaches
like Tkinter [12]. Python is an interpreted programming language, i.e., source code is
translated at runtime. To compensate performance drawbacks, computational-intense
functions are implemented in C and called at runtime. External libraries like NumPy [5]
adopt this principle and use efficient implementations, e.g., for vector-matrix andmatrix-
matrix multiplications. We used the Cython [1] extension to implement the forward al-
gorithm’s interleaved loops and the model-specific transition functions. Cython allows
to implement CPU-intensive modules as C-extensions in a Python-like syntax with ad-
ditional annotations such as static type declarations. Afterwards, the Cython source code
is transformed into C code, compiled, and called at runtime from within Python. Our
tool automatically integrates the model-specific transition function defined by the users
into the forward algorithm that is a static part of the tool. Analyzing large DTMCs is

limited by the memory on the host system. The functional specification may mitigate
but not solve the memory problems that arise with a large number of states. We applied
the memory-to-disk swapping mechanism of NumPy so that computing data is stored in
a file on the hard disk which can be accessed in small segments.

Within the tool’s GUI, users can define multiple projects. For each project, multiple
DTMCs can be specified either in the functional or conventional specification within an
interactive dialogue or by importing a JSON file. DTMC models and the output of the
calculation algorithms can be visualized in multiple plot views. Projects can be stored
as files in JSON format and be imported.

References
1. Cython: C-Extensions for Python. http://cython.org/
2. Github: FunSpec4DTMC. https://github.com/uni-tue-kn/funspec4dtmc
3. GNU General Public License 3. https://www.gnu.org/licenses/gpl-3.0.en.html
4. Matplotlib 2.1.0. https://matplotlib.org/
5. NumPy - Scientific Computing with Python. http://www.numpy.org/
6. PyPI: discreteMarkovChain. https://pypi.python.org/pypi/discreteMarkovChain
7. PyQt5. http://www.numpy.org/
8. Python 3.6.3. https://www.python.org/downloads/release/python-363/
9. Qt. https://www.qt.io/
10. Qt5: Signals & Slots. http://doc.qt.io/qt-5/signalsandslots.html
11. SciPy. https://www.scipy.org/
12. tkinter. https://docs.python.org/3.6/library/tkinter.html
13. Benoit, Anne et al.: The Peps Software Tool. In: Proc. from the 13th Int. Conf. on the Tech-

nology of Object-Oriented Languages and Systems (TOOLS ’13). Springer (2003)
14. Bini, D. A. et al.: Structured Markov Chains Solver: Software Tools. In: Proc. from theWork-

shop on Tools for Solving Structured Markov Chains (SMCtools ’06). ACM (2006)
15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-oriented Software. Addison-Wesley, Boston, MA, USA (1995)
16. Hermanns, Holger et al.: A Set of Performance and Dependability Analysis Components for

CADP. In: Proc. of the 9th Int. Conf. on Theory and Practice of Software (TACAS ’03).
Springer (2003)

17. Katoen, J.P. et al.: The Ins and Outs of the Probabilistic Model Checker MRMC. In: Proc. of
the 6th Int. Conf. on the Quantitative Evaluation of Systems (QUEST ’09). IEEE Computer
Society Press (2009)

18. Kwiatkowska, M et al.: PRISM 4.0: Verification of Probabilistic Real-time Systems. In: Proc.
from the 23rd Int. Conf. on Computer Aided Verification (CAV ’11). Springer (2011)

19. Menth,M.: Description and analysis ofMarkov chains based on recursive stochastic equations
and factor distributions.World Journal ofModelling and Simulation,World Academic Union,
UK Vol. 7(No. 1, pp. 3-15) (2011)

20. Spedicato, G.A., Kang, T.S., Yalamanchi, S.B., Yadav, D.: Themarkovchain Package: A Pack-
age for Easily Handling Discrete Markov Chains in R

21. Stewart,W.J.: Introduction to the Numerical Solution ofMarkov Chains. PrincetonUniversity
Press, Princeton, New Jersey (1994)

22. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis
of Performance Modeling. Princeton University Press, Princeton, New Jersey (2009)

23. Timmer, M. et al.: Efficient Modelling and Generation of Markov Automata. In: Proc. of the
23rd Int. Conf. on Concurrency Theory (CONCUR ’12). Springer (2012)

All online resources were accessed on Nov 6, 2017.

http://cython.org/
https://github.com/uni-tue-kn/funspec4dtmc
https://www.gnu.org/licenses/gpl-3.0.en.html
https://matplotlib.org/
http://www.numpy.org/
https://pypi.python.org/pypi/discreteMarkovChain
http://www.numpy.org/
https://www.python.org/downloads/release/python-363/
https://www.qt.io/
http://doc.qt.io/qt-5/signalsandslots.html
https://www.scipy.org/
https://docs.python.org/3.6/library/tkinter.html

	FunSpec4DTMC – A Tool for Modelling Discrete-Time Markov Chains Using Functional Specification
	Introduction
	Tool Description
	Architecture and Implementation

