(©2018 SDS. Personal use of this material is permitted. Permission from SDS must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

LoCoSDN: A Local Controller for Operation of OF
Switches 1in non-SDN Networks

Mark Schmidt, Frederik Hauser, Bastian Germann, and Michael Menth
Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany
Email: {mark-thomas.schmidt,frederik.hauser,menth} @uni-tuebingen.de, bastian.germann@student.uni-tuebingen.de

Abstract—Hybrid OpenFlow (OF) switches can be operated
as legacy switches with a local control plane or as OF switches
that are controlled by an SDN controller. As a first thought,
hybrid switches are the first choice for network administrators
as they facilitate the transition from a traditionally operated
towards a software-defined network. However, we encountered
several limitations as most of these switches are based on a
legacy hardware platform that is augmented with a limited set of
OF features. As a consequence, some packet processing pipelines
of hybrid switches filter out packets before they pass the OF
part. To avoid these issues, we developed LoCoSDN, an SDN
architecture that imitates the hybrid switch behavior on OF-only
devices, i.e., they can be operated in traditional networks and
without any special knowledge about SDN. LoCoSDN contains a
Cisco-like CLI and configuration format so that configurations
from existing devices can be imported. It differentiates between a
startup and running configuration, and provides reconfigurability
during operation and support for an additional SDN controller.
We implemented LoCoSDN as a lightweight SDN controller for
the Ryu SDN controller framework that can be run on a single-
board computer.

I. INTRODUCTION

The current landscape of hardware-based network switches
includes three different architectures that are depicted in
Figure 1. Traditional network switches (1) consist of a data
plane and a control plane. The data plane is responsible for
fast packet processing and programmed by the control plane.
It contains algorithms for path computations and implements
various network mechanisms and protocols along with user
interfaces that allow network administrators to configure the
device. Software-defined networking (SDN) splits the strong
binding between data and control plane. OpenFlow (OF) is the
most widespread standard for SDN that defines an architecture
and a communication protocol between SDN switches and the
SDN controller. OF-only switches (2) only contain a data plane
and require an SDN controller that provides all functionality
of the former control plane. Protocols and mechanisms need
to be implemented in software running on the SDN controller.
Hybrid OF switches (3) contain the control plane of a legacy
switch with an interface to an OF controller. Forwarding
decisions are either made by the switch’s legacy control plane
or by an external SDN controller. Current hybrid OF switches
are mostly legacy hardware switches that are augmented with
a limited set of OF features. Therefore, hardware parts of the

This work was supported by the bwNET100G+ project which is funded by
the Ministry of Science, Research and the Arts Baden-Wiirttemberg (MWK).
The authors alone are responsible for the content of this paper.

switch such as TCAM, ASIC, and switch memory are used to
implement OF support through firmware updates.

SDN controller

|
Control = OF
Control plane plane | agent
OF agent T
§ : I
Data plane Data plane Data plane
) Legacy @ OF-only @) Hybrid OF

network switch network switch network switch

Fig. 1: Three different architectures for network switches. The legacy switch
combines a control and data plane on a single device. The OF-only switch
requires an SDN controller as substitute for the local data plane. The hybrid
OpenFlow switch combines a local control plane with an external SDN
controller.

Nowadays, only a few companies are ready to apply SDN
control to their networks. Others want to go this step only
in the future. When they invest now into new hardware, they
have two choices so that they can reuse the equipment in the
SDN network: hybrid OF switches or OF-only switches. In
comparison to OF-only switches, hybrid OF switches bring
many benefits: legacy control plane functions such as L2
switching, L3 routing, and VLAN tagging as well as legacy
user interfaces are further on usable. However, we encoun-
tered several limitations that are caused by the difficulties in
distinguishing between a local control plane and OF control. In
particular, we observed packet processing pipelines of hybrid
OF switches that filter out packets so that they did not reach
the SDN controller.

As an alternative for current hybrid OF switch architectures,
we propose LoCoSDN. It imitates the hybrid switch behavior
by coupling an OF-only switch with a local SDN controller
that can be run on cheap commodity hardware platforms,
e.g., a Raspberry Pi. In contrast to hybrid OF architectures,
all parts and interfaces of LoCoSDN are open-source. Lo-
CoSDN offers the legacy functions and user interfaces of a
legacy switch so that network administrators do not have to
know SDN specifics as long as the hybrid switch is operated in
the legacy mode. If LoCoSDN should be used within an SDN
infrastructure, it may be configured to connect to an external
SDN controller and pass-through the OF communication to
the switch.

Software Defined Systems (SDS), Barcelona, Spain, April 2018

The remainder of the paper is structured as follows. Sec-
tion II provides an overview of related work. In Section III,
we outline the basic idea of our concept. The internal design
of the local SDN controller as central part of LoCoSDN is
described in Section IV. The prototypical implementation and
a functional validation is described in Section V. Section VI
concludes this work.

II. RELATED WORK

In the following, we describe the characteristics and archi-
tecture of legacy network switches, introduce OF-only, hybrid,
and whitebox OF switches, and discuss related approaches for
bringing hybrid-like behavior to OF-only switches.

A. Legacy Network Switches

Legacy network switches offer many control plane functions
on different layers. Protocol-related functionalities include
ARP, MPLS, Q-in-Q, and ICMP, additional features include
access control lists (ACLs), mechanisms for authentication
and authorization, and vendor-specific interfaces to external
systems.

This large variety of control plane functions requires ex-
tensive and complex configuration. Therefore, legacy network
switches offer user interfaces and network management pro-
tocols. Most legacy network switches include two types of
user interfaces: web interfaces and command line interfaces
(CLIs). Web interfaces are graphical user interfaces that can
be accessed using a browser. CLIs represent simpler interfaces
where network administrators connect to a switch either over
a serial, Telnet, or secure shell (SSH) connection. Then,
ASCII-based human-to-machine languages are either used in
an interactive console prompt or for manually typing scripts or
configurations. Although syntax can be vendor-specific, Cisco-
like CLIs emerged as de-facto standard for legacy network
devices from various manufacturers. They are even used in
software tools [1] and operating systems [2] for interactive
configuration. Network management protocols such as SNMP
[3] or NETCONF [4] aim at network infrastructures with many
devices that need to be managed and operated.

B. OF Switches

The current landscape of OF switches can be divided into
OF-only and hybrid switch architectures. We classify whitebox
switches as either OF-only or hybrid OF switches, depending
on the particular form.

1) OF-Only Switches: The minimal architecture for an OF
switch strictly follows the OF switch specification [5] and does
not contain a legacy control plane. Instead, it has a micro-
processor running a firmware that includes an OF agent as
interface between the OF-only switch and an SDN controller.
OF-only switch architectures are mostly found in software
switches: Lagopus [6] or LINC-Switch [7] are examples for
OF-only switches. However, there is only a limited number of
OF-only hardware switches such as the NEC Programmable-
Flow series [8], the NoviFlow NOVISWITCHes [9], or the
experimental SDN switch platform Zodiac FX [10].

2) Hybrid OF Switches: This type of OF switch archi-
tecture combines a legacy control plane with an additional
option to use an external SDN controller. Figure 2 depicts the
internal architecture of a hybrid OF switch. The data plane
is programmed by a local control plane (1). It includes an
on-board logic (2) implementing basic network functionalities
such as L2 switching, L3 routing, or VLAN tagging, and
contains interfaces to external systems (3). The OF agent (4)
as additional component on the control plane represents the
interface to the SDN controller (5).

Management plane (off-board) Mgmt plane.
control plane
Web Telnet, NMS
’ off-board
PRI || browser SSH console ()
SDN / OF ‘
app
o OF
XML, Netconf,
etc. HTML Ascll SNMP controller

API Web CLI SNMP OF conf il oF agent
server arser agent agent |

| e On-board logic
| Forwarding pipeline |

GControl plane (onboard or local)

Data plane

Network device

Fig. 2: Internal architecture of a hybrid OF switch consisting of a data and
control plane (according to [11]).

The control plane firmware of hardware hybrid OF switches
is closed-source and mostly tailored to a particular hardware
model. It comes with a basic set of features, while additional
features can be activated by purchasing upgrade licenses. In
addition, the interface between the control and data plane
is based on a proprietary protocol. As a result, neither the
operating system nor the functionalities can be extended or
exchanged. For virtualized environments, also software hybrid
switches like Open vSwitch (OVS) [12] exist.

Still, this concept offers many benefits over OF-only
switches. First, control plane functions such as L2 switching
or L3 routing need to be implemented on the SDN con-
troller first when OF-only switches are rolled out. Hybrid
OF switches allow a step-by-step transition: legacy control
plane functions are still available on the local control plane,
an SDN controller is not required at this point. However, an
SDN controller may introduce new functionalities at a later
time. Second, hybrid OF switches enable parallel operation
of local control plane functions and of an SDN controller.
As an example, ARP functionality for L2 switching may be
provided by the local control plane whereas L3 routing is
achieved by an SDN controller. This reduces OF control plane
traffic and load on the SDN controller as some forwarding
decisions are made locally. It also reduces the latency for
installing forwarding rules resulting from the communication
between SDN switches and the SDN controller which may
be physically distant. Last, the hybrid architecture lowers the
barrier for network administrators to adopt OF-based SDN

because features and well-known user interfaces such as CLIs
of legacy switches are still present.

As a consequence of the hybrid architecture, forwarding
decisions for incoming data are either made by the local
control plane or the SDN controller. That requires a separation
mechanism. One approach defines the separation on a per port
or per VLAN base. Another approach defines the separation on
a per function base. As an example, an SDN controller is used
for L3 routing while L2 switching based on MAC addresses
still remains on the legacy control plane.

Typical hybrid switches are mostly based on a traditional
switch design which are extended with OF functionality. This
architecture may lead to several problems. E.g., in a previous
work [13], we experienced problems in forwarding EAPoL
packets in an 802.1X test infrastructure from a hybrid switch
to an SDN controller. The manufacturer’s OF documentation
[14] for that particular switch model shows a list of incom-
patibilities when using OF.

3) Whitebox Switches: The architecture is mainly driven
by large network operators and enterprises. To lower CAPEX,
low-cost original device manufacturers use generic, off-the-
shelf switching hardware to build SDN hardware switches
as an alternative to legacy, OF-only, or hybrid OF network
switches from big vendors. Whitebox switches like the OPEN
NETWORKING series from Edgecore [15] contain merchant
silicon switching chips, a commodity CPU, and memory.
They rely on an either proprietary or open-source network
operating system (NOS) [16] which can be installed via the
Open Network Install Environment (ONIE) [17]. Two widely
used examples are Cumulus Linux [18] and the Facebook
Open Switching System (FBOSS) [19]. Cumulus Linux is
an example for a heavyweight NOS that requires a powerful
computing platform on the network hardware, i.e., bare metal
switches that include multi-core CPUs, RAM, and a SSD. It
is based on a modified Debian distribution with interfaces to
hardware components such as routing tables and switching
ASICs. Besides providing an OF interface for complete exter-
nal control, the switch can be operated in a legacy manner as
well. Linux tools such as iproute2 [20] or Quagga [1] can
be used to control the data plane just like for hybrid OF
switches as discussed before. FBOSS is an example for an
open-source and rather lightweight NOS. API libraries such
as OpenNSL [21] and OF-DPA [22] run on a microprocessing
unit to interface specific switch ASICs.

Figure 3 depicts the difference between the hybrid and OF-
only whitebox switch architectures. Hybrid whitebox switch
architectures for running NOS such as Cumulus Linux contain
legacy network functions as part of their control plane. OF-
only whitebox switch architectures solely contain an OF agent
as interface to an external SDN controller.

C. Alternative Hybrid OF Switch Architectures

In contrast to OF-only switches, hybrid OF switches contain
a local control plane that primarily consists of two func-
tional parts: control plane functionalities and interfaces for
monitoring and configuration. In the following, we present

-~ c
c c
o 9
2 B
SDN 2 2
controller
¥ SDN controller

-~ c -~

c c % 4

S S S} v

k3] © ©

c c ™

s = o) OF agent

Network operating system with
hardware abstraction layer

Network operating system with
hardware abstraction layer

Data plane Data plane

Hybrid whitebox switch OF-only whitebox switch

Fig. 3: Comparison of hybrid and OF-only whitebox switch architectures.

related approaches that try to introduce hybrid-like behavior
to infrastructures that are built of OF-only switches and SDN
controllers by implementing the two functional parts.

1) Legacy Control Plane Functionalities: Valve [23] is an
SDN application that runs on top of the Ryu SDN controller
framework. It introduces various functionalities from legacy
control planes such as VLAN tagging, IPv4/IPv6 ACLs, auto-
configuration of ports, and port statistics. Valve is configured
within a static YAML file and can be run in parallel with
other SDN controllers. Therefore, flow entries installed by
Valve are identified by a special and unique OF cookie. Faucet
[24], [25] is an improvement of Valve and currently used
in various enterprise networks, including the administration
network of the Open Networking Foundation. Faucet supports
VLAN switching, IPv4/IPv6 routing, ACLs, port mirroring,
and policy-based forwarding. In addition, it pushes statistical
information to an external database and offers to use Grafana
to construct visualization views. Identical to Valve, Faucet uses
individual YAML files for configuration. Dragonflow [26] is
an SDN controller for the OpenStack Neutron [27] platform.
It is also based on the Ryu SDN controller framework and
provides several applications that implement legacy control
plane functionalities such as L2 switching, L3 routing, and
VLAN tagging. However, due to the fixed integration into the
OpenStack platform, the configuration of DragonFlow is fully
automated and based on the platform’s orchestrator.

2) User Interfaces to Control Plane Functions: CLIs rep-
resent the common way to configure traditional switches. The
following approaches introduce CLIs on SDN controllers to
ease the transition for network administrators. SDNsh [28]
is an advanced CLI for the OpenDaylight SDN controller
platform and the Open Network Operating System. It offers a
Python-based CLI depending on a running instance of sdncon,
a northbound interface of the two platforms. OpenMUL [29]
is an SDN controller that provides a CLI to specify the
entries of the flow tables, specify actions, and define OF
pipelines. However, both approaches do not come with built-in
commands for traditional networking.

III. ARCHITECTURE OF LOCOSDN

In this section, we describe the physical setup of LoCoSDN.

Management
= |Local External

comrollere controller o

Fig. 4: Physical setup of LoCoSDN consisting of an OF switch, a local
controller, a management station, and an optional external controller.

Figure 4 depicts the physical architecture of LoCoSDN. An
OF-only switch (1) is directly connected via an Ethernet cable
to a cheap single-board computer (SBC) that runs a local SDN
controller (2). OF is used as open and extensible southbound
protocol on the link between the data (1) and control plane (2).
The SBC provides another physical interface (3) to connect to
a management network that can consist of additional external
SDN controllers (4) or management computers (5).

We chose to use an OF-only switch (1) as datapath ele-
ment. As introduced in Section II, it represents a minimal
architecture for an OF switch which only forwards packets on
physical ports based on entries in the OF flow table. It has
an OF agent on a microprocessor that holds an OF connection
with an SDN controller over an Ethernet link. The LoCoSDN’s
controller (2) is the key element of the architecture. It runs
on an SBC and realizes the entire control plane functionality
of the LoCoSDN architecture. It implements all control plane
functionalities such as L2 switching, L3 routing, or VLAN
tagging and includes known user interfaces such as a CLI
and web interface. LoCoSDN’s SBC running the local SDN
controller contains another physical Ethernet port. It is used to
connect a management network that can host additional SDN
controllers (4) and management computers (5). Additional
SDN controllers may be either used as a substitute or in
conjunction with LoCoSDN’s local SDN controller. External
SDN controllers may be responsible for multiple switches and
therefore provide a more global view of the network which en-
ables global optimizations and more complex traffic steering.
Management computers configure switches and routers either
through network management protocols such as SNMP or
user interfaces. LoCoSDN’s SDN controller offers a Cisco-like
CLI and web-based GUI for administration. The size of the
management network can vary greatly, ranging from a single
management computer up to an infrastructure with numerous
distributed SDN controller instances.

IV. THE LOCOSDN CONTROLLER

In the following, we present the modes, the module sys-
tem, the storage model, and the configuration model of the
LoCoSDN controller in detail.

A. Modes

LoCoSDN supports three modes of operation: local con-
troller, remote controller, and hybrid mode. In local controller
mode, no external SDN controller is used at all. Instead, all
desired network functionalities are either provided by basic
SDN applications that are part of the LoCoSDN controller
or by additional modules. In remote controller mode, Lo-
CoSDN’s local SDN controller is not used at all. Instead,
all control plane functionalities are provided by an external
SDN controller that is attached to the management network.
In use cases where a remote controller manages the entire
switch, the local SDN controller is not needed, i.e., the switch
has to be reconfigured to connect to an external controller
and after that, the local controller can be switched off. In
hybrid mode, data plane control can be either done by the
local controller or by an external SDN controller on a per-port
base. This mode is useful for scenarios where some ports of
the switch are managed by the local controller and some ports
are configured by a global controller. Therefore, the network
administrator needs to define which physical port of the OF
switch belongs to which controller. In this mode, LoCoSDN’s
local controller acts as a proxy to external SDN controllers and
ensures that the SDN controllers can only install flow rules
lying in their respective range of authority. Figure 5 depicts
an exemplary scenario of the hybrid mode. Several physical
ports are controlled by LoCoSDN’s local SDN controller (1)
where other physical ports are controlled by the external SDN
controller (2).

Management

= |Local
controller

External
controller

Fig. 5: Multiple physical ports of a LoCoSDN switch are controlled by the
local SDN controller, other physical ports are controlled by an external SDN
controller.

B. Module System

When operated in local controller or hybrid mode, Lo-
CoSDN’s SDN controller provides the control plane function-
alities of a legacy network switch. L2 switching, L3 routing,
and VLAN tagging are examples for legacy control plane
network functions, the AAM as presented in [13] is a novel
functionality. LoCoSDN splits those different functions into
dedicated modules. Figure 6 depicts the mechanism of Lo-
CoSDN’s module system. It consists of three layers: the SDN
controller layer (1), the module layer (2), and the configuration
layer (3). Each module consists of controller logic that realizes
the actual functionality and a parser for the configuration data.

As depicted in Figure 6, LoCoSDN’s SDN controller al-
ready includes basic modules such as L2 switching, L3 rout-
ing, and VLAN tagging depicted in (2)(a). Missing features
can be implemented in add-on modules like shown in (2)(b).
An example add-on module is the AAM [13].

= = = = 15
o2 |[02|l o2 02| 2
HEHEE 35| 3¢
sl oD [<l=] oD g’%
SE||SE|| SE SE £
8 8 8 8| ©
1 1 1 1
R Tt CE T e e ———
1
1 1 c
1 28 g o2 5§38 (-
R] - HER
25| =8 3 lldo2|1 <3 é ' o8&
1 &€ % = =8| S E : ="
1 =
__________________ i)
Module orchestation 5
Z3 6
520
(/Jgﬂ
SDN controller 3]

Fig. 6: Simple module mechanism for the LoCoSDN switch consisting of a
base module that registers add-on modules and configuration data.

C. Storage Model

Figure 7 shows the storage model of LoCoSDN that is
split up into two partitions. The firmware partition (1) holds
a minimal Linux operating system with an SDN controller.
Basic control plane functionalities as discussed before are
encapsulated in base modules. The firmware partition is bun-
dled as a downloadable image so that upgrading the whole
firmware consisting of operating system and SDN controller
is an easy task. The persistent storage partition (2) contains
the module configurations and add-on modules. This partition
is not affected by changes in the firmware partition so that
the operating system and the SDN controller can be upgraded
without losing configuration data or base modules.

Firmware partition Persistent storage partition

Basic SDN applications

SDN controller

Storage model

Operating system

Fig. 7: Storage layout of the LoCoSDN consisting of a firmware partition and
a partition for configuration data and additional modules.

D. Configuration Model

Figure 8 depicts the internal structure of the local controller.
It consists of three main blocks: the configuration front end (1),
the configuration back end (2), and the actual SDN controller
(3).

The configuration front end includes two different user
interfaces: a CLI and a web-based GUI. A Cisco-like CLI
offers administrators full access to all features of LoCoSDN’s
local SDN controller, i.e., all functionalities can be con-
figured exactly like on legacy network switches. To enable
a soft transition from existing deployments that are based
on traditional switches, it allows importing already existing
network configuration data in the Cisco format. An adopted

Cisco format is used as native configuration format. The web-
interface provides a simplified interface for end users.

Both user interfaces communicate via API calls with the
configuration back end. Like in typical traditional switches
or routers, the configuration distinguishes between a startup
config and a running config. The startup config represents
the persistent configuration that is loaded at system start
and then copied to a temporary running config. Changes to
the configuration are only applied to the running config and
require an explicit write command to be made persistent. The
advantage of this mechanism is that the startup config should
always be in a working state and in case of a misconfiguration,
a reboot returns into a working state.

o Configuration frontend

Cisco
config

Import

API

Startup config

o riw
Unix
@ | sSDN |socket Configuration
- controller backend

w
notify

Running config

Fig. 8: The local controller consists of a configuration front and back end and
an SDN controller communicating with each other.

The actual SDN controller realizes the functionality of a
traditional L3 switch and configures the SDN switch via OF
accordingly. To that end, the controller needs to implement
parsers for the different parts of the running config and the
corresponding functionality to translate the configuration data
into flow rules.

In case of changes to the running config, the controller gets
notified to re-read the data. After that, the modified flow rules
are applied at the switch. Information from the switch like,
e.g., port-up or port-down messages, are forwarded to the
configuration back end via a custom API and visualized in
the configuration front end.

V. PROTOTYPICAL IMPLEMENTATION & FUNCTIONAL
VALIDATION

In the following, we describe the hardware and software
that we used to implement the prototype and describe our
prototypical validation.

A. Prototypical Implementation

Figure 9 depicts the hardware architecture of the prototyp-
ical implementation. The prototype runs on an inexpensive
experimental hardware platform and focuses on features rather
than performance. We decided to use a Zodiac FX [10] as OF-
only switch. It is the result of a crowdfunding campaign [30]
initiated in 2015 by Northbound Networks, the current seller of

the switch. The Zodiac FX is an open hardware platform that
is based on the Atmel ATSAMA4E Cortex M4 microprocessor.
It offers four 100 Mb/s links and support for OF in version 1.0
and 1.3. The firmware of the Zodiac FX is open source [31]
which allowed us to fix a firmware bug in VLAN tagging. We
further decided to use the Raspberry Pi 3 [32] microcomputing
platform with a quad-core ARM CPU and 1GB RAM as
SBC running LoCoSDN’s local SDN controller. The first USB
port of the Raspberry Pi is used as power supply to the
Zodiac FX switch, the other USB port connects a USB NIC
for the management network. This platform provides enough
hardware resources to run LoCoSDN’s local SDN controller
with typical network functions such as L2 switching, L3
routing, or VLAN tagging. If more complex and CPU-intense
network functions should be provided, the hardware platform
might be substituted by a more powerful platform.

Fig. 9: Assembled hardware platform of LoCoSDN consisting of a Zodiac
FX OF-only switch, a Raspberry Pi 3, and a USB NIC.

We chose RASPBIAN [33] as Linux-based operating sys-
tem for the SBC. We implemented LoCoSDN’s local SDN
controller using the Ryu SDN controller framework [34]. It is
implemented in Python 3 and optimized for rapid prototyp-
ing using a lightweight architecture. The implementation of
LoCoSDN’s local SDN controller encompasses two parts: the
network functions and the user interfaces of legacy control
planes. On the network function side, we implemented L2
switching, L3 routing, and VLAN tagging. On the user inter-
face side, we implemented a specific northbound interface to
communicate with the configuration back end that uses two
different methods. The SDN controller reads its configuration
data from a file and regularly polls it for updates. A Unix
socket signals events from the switch to the configuration back
end. The configuration back end and front end are also imple-
mented in Python and communicate with each other directly
via API calls. For evaluation purposes, we implemented a fully
functional CLI as shown in Figure 10 and a read-only web-
interface to display the current configuration and state of the
LoCoSDN switch.

B. Functional Validation

To validate the prototypical implementation, we built a
simple test setup consisting of three LoCoSDN switches that
are connected by Ethernet links like shown in Figure 11. Each

~ Terminal - mininet@mininet: ~/LoCoSDN - + X
File FEdit View Terminal Tabs Help

port 1
Configuration for port 1. Enter '?' at any time.

vid 108

Configuration for vid 100. Enter '?' at any time.

untag

exit

up

exit

vian 160 :
Configuration for vlan 100. Enter '?' at any time.

ip 192.168.0.254/24

exit

il |

Fig. 10: Screenshot of LoCoSDN’s CLI presenting the VLAN configuration.

LoCoSDN switch has a Raspberry Pi 3 acting as network client
attached to it via an Ethernet link. The management port of
each LoCoSDN switch is connected to a 5-port legacy switch
that also includes a notebook for management. For an initial
test, we configure the Client] and Client2 with an IP address in
the subnet 10.0.1.0/24. The two clients can reach each other
via the switch. Next, we configure the port towards Clientl
with VLAN 1 and the port towards Client2 with VLAN 2. As
expected, the two clients cannot reach each other any longer.
As a final configuration test, we configure for Clientl, Client2,
and Client3 an IP address in the IP subnet 10.0.2.0/24 and
set their access ports on the switches to VLAN 2. The ports
connecting both switches are configured with tagged in VLAN
2. Initially only the clients in VLAN 2 can communicate. After
enabling IP routing in the CLI, Clientl can reach the other
Clients. To test the communication in the other direction from
the switch to the configuration back end, we keep the setup
like in the previous experiment. The CLI shows that all ports
are up. When we unplug Client2, we receive a port-down event
in the CLI and the port status is set accordingly.

Client1

LoCoSDN
Switch 2
" I

Fig. 11: The evaluation setup.

Client2 Client3

4

LoCoSDN
Switch 1

LoCoSDN
Switch 3

VI. CONCLUSION

In this paper, we presented LoCoSDN as an alternative
architecture to hybrid switches. It consists of an OpenFlow-
only switch and a local SDN controller running on a cheap
single board computer. As with typical hybrid switches, Lo-
CoSDN supports traditional network operation and SDN-based
operation. To that end, the local SDN controller provides the
basic features of a typical L3 switch which can be extended via
a simple module system. In SDN mode, the SDN applications
can either run within the local SDN controller or an external
SDN controller with a global network view can be attached.
In the latter case, the local SDN controller acts as a proxy. We

evaluated LoCoSDN with the help of a prototype in a simple
testbed.

(1]
(2]
(3]

(4]

(5]

(6]
(7]
(8]
(91
[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]

[27]
[28]

REFERENCES

B. Gurudoss, P. Jakma, T. Terds, G. Troxel, and Quagga developer team,
“Quagga Routing Suite,” http://www.nongnu.org/quagga/.

Graeme McKerrell, “CLISH Documentation,” http://clish.sourceforge.
net/clish-0.7.3/.

J. Case, R. Mundy, D. Partain, and B. Stewart, “Introduction and Ap-
plicability Statements for Internet Standard Management Framework,”
RFC 3410 (Proposed Standard), Internet Engineering Task Force, Dec.
2002.

R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” RFC 6241 (Proposed Standard),
Internet Engineering Task Force, Jun. 2011.

Open Networking Foundation members, “OpenFlow Switch Speci-
fication,” https://www.opennetworking.org/wp-content/uploads/2014/10/
openflow-switch-v1.5.1.pdf, The Open Networking Foundation, 2017.
Y. Nakajima, K. Kaplita, and Lagopus developer team, “Lagopus
switch,” http://www.lagopus.org/.

K. Rutka and FlowForwarding.org community, “LINC - OpenFlow
software switch,” https://github.com/FlowForwarding/LINC-Switch.
NEC Corporation, “NEC ProgrammableFlow,” http://www.nec.com/en/
global/prod/pflow/, 2017.

NoviFlow Inc., “NoviFlow NoviSwitch,” https://noviflow.com/products/
noviswitch/, 2017.

Northbound Networks, “Zodiac FX,” https://northboundnetworks.com/
products/zodiac-fx, 2016.

E. Verizhnikova, “SDN — Hybrid architecture,” https://www.slideshare.
net/verizhnikova/larch-network-hybridization-jan2013.

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and
M. Casado, “The design and implementation of open vswitch,” in 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). USENIX Association, 2015, pp. 117-130. [Online].
Available: https://www.usenix.org/conference/nsdil5/technical-sessions/
presentation/pfaff

F. Hauser, M. Schmidt, and M. Menth, “Establishing a session database
for sdn using 802.1x and multiple authentication resources,” in 2017
IEEE International Conference on Communications (ICC), May 2017,

pp. 1-7.
Hewlett Packard Enterprise, “HP Switch Software Open-
Flow v1.3 Administrator Guide nl K/KA/KB/WB 15.18,”

http://h20566.www2.hpe.com/hpsc/doc/public/display ?sp4ts.oid=
7074783 &docLocale=en_US&docld=emr_na-c04777809.

EdgeCore Networks Corporation, “EdgeCore OPEN NETWORKING,”
https://moviflow.com/products/noviswitch/, 2017.

Edge Core Networks, “Open Networking Solutions for Data Center,
Telecom, and Enterprise,” http://www.edge-core.com/solution-inquiry.
php?cls=5\&id=7.

Cumulus Networks Inc. and Open Compute Project, “Open Network
Install Environment (ONIE),” http://onie.org/about/, 2015.

Cumulus Networks Inc., “Cumulus Linux - The world’s most flexi-
ble open network operating system for bare metal switches,” https:
//cumulusnetworks.com/products/cumulus-linux/, 2013.

Facebook Inc., “Facebook Open Switching System (FBOSS),” https://
github.com/facebook/fboss, 2015.

A. Kuznetsov and S. Hemminger, “iproute2: Utilities for Control-
ling TCP/IP Networking and Traffic,” http://www.linuxfoundation.org/
collaborate/workgroups/networking/iproute2, 2012.

Broadcom Limited, “OpenNSL,” https://github.com/Broadcom-Switch/
OpenNSL, 2017.

——, “OF-DPA,” https://github.com/Broadcom-Switch/of-dpa, 2017.
B. Cowie, C. Lorier, and J. Stringer, “valve,” https://github.com/
wandsdn/valve, 2016.

J. Bailey and S. Stuart, “Faucet: Deploying sdn in the enterprise,” Queue,
vol. 14, no. 5, pp. 30:54-30:68, Oct. 2016.

J. Bailey, “faucet,” https://github.com/REANNZ/faucet, 2017.

E. Gampel and DragonFlow drivers team, “dragonflow,” https://
launchpad.net/dragonflow.

OpenStack Foundation, “Openstack,” https://www.openstack.org/, 2017.
opendaylight, “archived-net-virt-platform/cli,” https://github.com/
opendaylight/archived-net-virt-platform/tree/master/cli, 2013.

[29]

[30]

[31]
(32]

[33]
(34]

OpenMUL Foundation, “OpenMUL — High Performance SDN,” http:
/Iwww.openmul.org/.

Northbound Networks, “Zodiac FX: The world’s
smallest OpenFlow SDN switch,” https://

www.kickstarter.com/projects/northboundnetworks/
zodiac-fx-the-worlds-smallest-openflow-sdn-switch, 2016.

——, “Zodiac FX Firmware,” https://github.com/NorthboundNetworks/
ZodiacFX, 2016.

RASPBERRY PI FOUNDATION, “RASPBERRY PI 3 MODEL B,”
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/, 2015.
M. Thompson and P. Green, “Raspbian,” https://www.raspbian.org/.
Ryu SDN Framework Community, “Ryu,” http://osrg.github.io/ryu/.

