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Abstract—Traditional IP multicast (IPMC) maintains state per
IPMC group in core devices to distribute one-to-many traffic
along tree-like structures through the network. This limits its
scalability because whenever subscribers of IPMC groups change,
forwarding state in the core network needs to be updated.
Bit Index Explicit Replication (BIER) has been proposed by
the IETF for efficient transport of IPMC traffic without the
need of IPMC-group-dependent state in core devices. However,
legacy devices do not offer the required features to implement
BIER. P4 is a programming language which follows the software-
defined networking (SDN) paradigm. It provides a programmable
data plane by programming the packet processing pipeline of
P4 devices. In this paper, we present the first hardware-based
implementation of BIER and make the source code publicly
available. Our hardware target is the high-performance P4
switching ASIC Tofino. The performance evaluation shows that
BIER can be implemented with line rate forwarding on a
high-performance, hardware-based P4 target. However, BIER
processing requires packet recirculation which may decrease the
throughput in case of insufficient recirculation capacity. To avoid
this effect, physical ports can be turned into loopback mode
and utilized for recirculation as well. We demonstrate that by
experimental evaluation with our prototype and propose and
validate a theoretical model for BIER throughput. We present a
general model to provision recirculation ports on a P4 switch. We
apply it to BIER to show that a very few physical recirculation
ports suffice on a switch to support realistic traffic mixes.

Index Terms—Software-Defined Networking, P4, Bit Index
Explicit Replication, Multicast, Resilience, Scalability

I. INTRODUCTION

IP multicast (IPMC) has been proposed to efficiently dis-
tribute one-to-many traffic, e.g. for IPTV, multicast VPN, com-
mercial stock exchange, video services, public surveillance
data distribution, emergency services, telemetry, or content-
delivery networks, by forwarding only one packet per link.
IPMC traffic is organized in IPMC groups which are sub-
scribed by hosts. Figure 1 shows the concept of IPMC. IPMC
traffic is forwarded on IPMC-group-specific distribution trees
from the source to all subscribed hosts. To that end, core
routers maintain forwarding state for each IPMC group to
determine the next-hops (NHs) of an IPMC packet. Scalability
issues are threefold. First, a significant amount of storage is
required to keep extensive forwarding state. Second, when
subscribers of an IPMC group change, the distribution tree
needs to be updated by signaling the changes to core devices.
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Figure 1: Two multicast distribution trees.

Third, the distribution trees have to be updated when the
topology changes or a failure is detected. Therefore, traditional
IPMC comes with significant management and state overhead.

The IETF proposed Bit Index Explicit Replication (BIER)
[1] for efficient transport of IPMC traffic. BIER introduces
a BIER domain where core routers do not need to main-
tain IPMC-group-dependent state. Upon entering the BIER
domain, IPMC packets are equipped with a BIER header
which specifies all destinations of the packet within the BIER
domain. The BIER packets are forwarded through the BIER
domain towards their destinations on paths from the Interior
Gateway Protocol (IGP), which we call ’routing underlay’ in
the following. Thereby, only one packet is forwarded per link.
When the BIER packets leave the BIER domain, the BIER
header is removed.

Unicast and BIER traffic may be affected by failures. IP-
Unicast traffic is often protected by IP fast reroute (IP-FRR)
mechanisms. IP-FRR leverages precomputed backup entries to
quickly reroute a packet on a backup path when the primary
NH is unreachable. Tunnel-based BIER-FRR [2] is used to
protect BIER traffic by tunneling BIER packets through the
routing underlay. The tunnel may be also affected by a failure,
but FRR or timely updates of the forwarding information base
(FIB) in the routing underlay quickly restores connectivity.
However, BIER is not supported by legacy devices and there
is no dedicated BIER hardware available. P4 [3] is a pro-
gramming language that follows the software-defined network-
ing (SDN) paradigm for programming protocol-independent
packet processors. P4 allows developers to write high-level
programs to define the packet processing pipeline of net-
work devices. A target-specific compiler translates the P4
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program for execution on a particular device. With the P4-
programmable data plane new protocols can be implemented
and deployed in short time. In [2], [4] we presented a P4-based
implementation of BIER and tunnel-based BIER-FRR for the
P4 software switch BMv2 [5].

The contribution of this paper is threefold. First, we present
the first implementation of BIER, and tunnel-based BIER-FRR
for a P4 hardware platform, i.e., the P4 switching ASIC Tofino
[6], and make it publicly available. The implementation of
BIER in P4 requires that packets are recirculated so that they
can be processed by the pipeline again. However, there is only
limited capacity for traffic recirculation in P4 and throughput
decreases if this limit is exceeded. We explain how we prevent
this issue by leveraging so-called recirculation ports which
increase the amount of traffic that can be recirculated. Second,
we conduct a comprehensive hardware-based evaluation of
BIER, and BIER-FRR which shows that BIER with line
rate forwarding on a 100 Gb/s data center switch can be
implemented in P4, and that BIER-FRR restores connectivity
in case of failures with very little delay. Third, we present
models to predict the throughput of recirculation traffic and
derive the required number of physical ports that should be
turned into loopback mode to support recirculation traffic.
We model this problem for BIER traffic and a comparison
with experimental results shows good accordance with the
measured values. Finally, we utilize this model to show that
only a few ports in loopback mode suffice to support realistic
mixes of unicast and multicast traffic.

The paper is structured as follows. In Section II we describe
related work. Section III contains a primer on BIER and
tunnel-based BIER-FRR. Afterwards, we give an overview
on P4 in Section IV. In Section V, we describe the P4
implementation of BIER and tunnel-based BIER-FRR for
the Tofino. Section VI contains our evaluation and model
derivation. We conclude the paper in Section VIII.

II. RELATED WORK

First, we describe related work for SDN-based multicast in
general. Afterwards, we review work for BIER-based multi-
cast.

A. SDN-based Multicast

Two surveys [7], [8] provide a comprehensive overview of
SDN-based multicast. They review the development of tradi-
tional multicast and different aspects of SDN-based multicast,
e.g., building of distribution trees, group management, and
approaches to improve the efficiency of multicast. Most of the
papers in the surveys discuss multicast mechanisms that are
based on explicit IPMC-group-dependent state in core devices.
The papers often focus on intelligent tree building mechanisms
that reduce the state, or efficient signaling techniques when
IPMC-groups or the topology changes. Here, we mention only
some papers that implement multicast for SDN. Other works
can be found in the surveys.

1) Optimization of Multicast Trees: Rückert et al. propose
Software-Defined Multicast (SDM) [9]. SDM is an OpenFlow-
based platform that provides well-managed multicast for over-
the-top and overlay-based live streaming services tailored for
P2P-based video stream delivery. The authors extend SDM in
[10] with traffic engineering capabilities. In [11] the authors
propose address translation from the multicast address to
the unicast address of receivers at the last multicast hop in
OpenFlow switches. This reduces the number of IPMC-group-
dependent forwarding entries in some nodes.

Steiner trees are often used to build multicast distribution
trees [12]. Several papers modify the original Steiner-tree
problem to build distribution trees with minimal cost [13],
number of edges [14], number of branch nodes [15], delay
[16], or for optimal position of the multicast source [17].

The authors of [18] implement a multicast platform in
OpenFlow with a reduced number of forwarding entries. It
is based on multiple shared trees between different IPMC
groups. The Avalanche Routing Algorithm (AvRA) [19] con-
siders properties of the topology of data center networks to
build trees with optimal utilization of network links. Dual-
Structure Multicast (DuSM) [20] leverages different forward-
ing structures for high-bandwidth and low-bandwidth flows.
This improves scalability and link utilization of SDN-based
data centers. Jia et. al. [21] present a way to efficiently
organize forwarding entries based on prime numbers and the
Chinese remainder theorem. This reduces the required state in
forwarding devices and allows more efficient implementation.
In [22] the authors propose a SDN-based multicast switching
system that leverages bloom filters to reduce the number of
TCAM-entries.

2) Resilience for Traditional Multicast: Shen et al. [23]
modify Steiner trees to include recovery nodes in the multicast
distribution tree. The recovery nodes cache IPMC traffic tem-
porarily and resend it after reconvergence when the destination
notified the recovery point because it did not get all packets
due to a failure. The authors of [24] evaluate several algorithms
that generate node-redundant multicast distribution trees. They
analyse the number of forwarding entries and the effect of
node failures. In [25] the authors propose to deploy primary
and backup multicast trees in SDN networks. The header of
multicast packets contains an ID that identifies the distribution
tree on which the packet is forwarded. When a failure is
detected, the controller reconfigures affected sources to send
packets along a working backup tree. Pfeiffenberger et al.
[26] propose a similar method. Each node that is part of a
distribution tree is the root of a backup tree that does not
contain the unreachable NH but all downstream destinations
of the primary distribution tree. When a node cannot forward
a packet, it reroutes the packet on a backup tree by switching
an VLAN tag in the packet header.

B. BIER-based Multicast

In [27], [28] the authors implement explicit-state-based
IPMC and BIER forwarding in OpenFlow. However, the BIER
implementation suffers from two major shortcomings. First,
the BIER bit string is encoded in an MPLS header which is
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the only way to encode arbitrary bit strings in OpenFlow. This
limits the bit string length, and thus the number of receivers,
to 20 which is the length of an MPLS label. Second, the
implementation performs an exact match on the bitstring. If
a subscriber changes, the match does not work anymore and
a local BIER agent that is not part of the OpenFlow protocol
needs to process the packet. The authors of [29] perform a
simulation-based evaluation of BIER. They find that on metrics
like delivery ratios and retransmissions BIER performs as well
as traditional IPMC but has better link usage and no per-flow
or per-group state in core devices.

Eckert et. al. [30] propose an extension for BIER that allows
for traffic engineering (BIER-TE). In addition to the egress
nodes, the BIER header encodes the distribution tree of a
packet. In [31] the authors propose 1+1 protection for BIER-
TE. The traffic is transported on two disjoint distribution trees,
which delivers the traffic even if one tree is interrupted by a
failure.

III. BIT INDEX EXPLICIT REPLICATION (BIER)

In this Section we explain BIER. First, we give an overview.
Then we describe the BIER forwarding table and how BIER
packets are processed. Afterwards, we show a forwarding
example. Finally, we review tunnel-based BIER-FRR.

A. BIER Overview

First, we introduce the BIER domain. Then, we present
the layered BIER architecture followed by the BIER header.
Finally, we describe BIER forwarding.

1) BIER Domain: Figure 2 shows the concept of the
BIER domain. When bit-forwarding ingress routers (BFIRs)
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Figure 2: The concept of the BIER domain.

receive an IPMC packet they push a BIER header onto it
and forward the packet into the BIER domain. The BIER
header identifies all destinations of the BIER packet within
the BIER domain, i.e., bit-forwarding egress routers (BFERs).
Bit-forwarding routers (BFRs) forward the BIER packets to
all BFERs indicated in its BIER header. Thereby, packets
are replicated and forwarded to multiple next-hops (NHs) but
only one packet is sent over any involved link. The paths
towards the destinations are provided by the Interior Gateway
Protocol (IGP), i.e., the routing underlay. Therefore, from a
specific BFIR to a specific BFER, the BIER packet follows
the same path as unicast traffic. Finally, BFERs remove the
BIER header.

2) The Layered BIER Architecture: The BIER architecture
consists of three components. The IPMC layer, the BIER layer
and the routing underlay. Figure 3 shows the three layers,
their composition, and interaction. The IPMC layer contains
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Figure 3: IPMC packets are transmitted over a layered BIER
architecture; the paths are defined by the information from the
routing underlay.

the sources and subscribers of IPMC traffic. The BIER layer
acts as a transport layer for IPMC traffic. It consists of the
BIER domain which is connected to the IPMC layer at the
BFIRs, and BFERs. Therefore, the BIER layer acts as a
point-to-multipoint tunnel from an IPMC source to multiple
subscribers. The routing underlay refers to the IGP which
provides the paths to all destinations within the network.

3) BIER Header: The BIER header contains a bit string to
indicate the destinations of a BIER packet. To that end, each
BFER is assigned an unique number that corresponds to a bit
position in that bit string, starting by 1 for the least-significant
bit. If a BFER should receive a copy of the IPMC packet, its
bit is activated in the bit string in the BIER header of the
packet. To facilitate readability we refer to the bit string in
the BIER header of a BIER packet with the term ’BitString’.

4) BIER Forwarding: A BFR forwards a packet copy to
any neighbor over which at least one destination of the packet
indicated by its BitString is reached according to the paths
from the routing underlay. Before a packet is forwarded to a
specific NH, the BFR clears all bits that correspond to BFERs
that are reached via other NHs from the BitString of that
packet. This prevents duplicates at the BFERs.

B. BIFT Structure

BFRs use the Bit Index Forwarding Table (BIFT) to deter-
mine the NHs of a BIER packet. Table 1 shows the BIFT of
BFR 1 from Figure 4. For each BFER there is one entry in the
BIFT. Entries of the BIFT consist of a NH, and a so-called
F-BM. The F-BM is a bit string similar to the BitString. It
records which BFERs have the same NH. In the F-BM of an
BIFT entry the bits of BFERs are activated which are reached
over the NH of that entry. Therefore, BFERs with the same
NH have the same F-BM. BFRs use the F-BM to clear bits
from the BitString of a packet before it is forwarded to a NH.
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BFER NH F-BM
1 - -
2 2 1010
3 3 0100
4 2 1010

Table 1: BIFT of BFR 1 in the example of Figure 4.

C. BIER Packet Processing

When a BFR receives an BIER packet, it first stores the
BitString of the packet in a separate bit string to account
to which BFERs a packet has to be sent. In the following,
we refer to that bit string with the term ’remaining bits’.
The following procedure is repeated, until the remaining bits
contain no activated bits anymore.

The BFR determines the least-significant activated bit in the
remaining bits. The BFER that corresponds to that bit is used
for a lookup in the BIFT. If a matching entry is found, it
results in a NH nh and the F-BM fbm and the BFR creates
a copy of the BIER packet. The BFR uses fbm to clear bits
from the BitString of the packet copy. To that end, the BFR
performs a bitwise AND operation of fbm and the BitString
of the packet copy and writes the result into the BitString of
the packet copy. This procedure is called applying the F-BM.
It leaves only bits of BFERs in the BitString active that are
reached over nh. The packet copy is then forwarded to nh.
Afterwards, the bits of BFERs to which a packets has just been
sent are cleared from the remaining bits. To that end, the BFR
performs a bitwise AND operation of the bitwise complement
of fbm with the remaining bits. The result is then stored in
the remaining bits.

D. BIER Forwarding Example

Figure 4 shows a topology with four BIER devices where
each is BFIR, BFR, and BFER. Table 1 shows the BIFT of
BFR 1.

2

3

1

4
Shortest path tree from the
routing underlay of BFR 1

IPMC host 1

IPMC host 3

IPMC host 2

IPMC host 4

BIER domain

1110
1010

0100 1000

Figure 4: Example of a BIER topology and BitStrings of
forwarded BIER packets.

BFR 1 receives an IPMC packet from IPMC host 1 which
should be distributed to all other IPMC hosts. Therefore, BFIR
1 pushes a BIER header with the BitString 1110 to the IPMC
packet.

Then, BFR 1 determines the least-significant activated bit in
the BIER header which corresponds to BFER 2. This BFER is
used for lookup in the BIFT, which results in the F-BM 1010
and the NH BFR 2. BFR 1 creates a packet copy and applies
the F-BM to its BitString. Then, the packet copy with the

BitString 1010 is forwarded to BFR 2. Finally, the activated
bits of the F-BM are cleared from the remaining bits which
leaves the bit string 0100.

This leaves only one bit active which identifies BFER 3.
After the F-BM 0100 is applied to the BitString of a packet
copy, it is forwarded to BFR 3 with the BitString 0100.
After clearing the bits of the F-BM from the remaining bits,
processing stops because no active bits remain.

E. Tunnel-Based BIER-FRR

Tunnel-based BIER-FRR is used to deliver BIER traffic
even when NHs are unreachable due to link or node failures.
When a BFR detects that a NH is unreachable, e.g., by loss-
of-carrier, loss-of-light, or a bidirectional forwarding detection
(BFD1) [32] for BIER [33], it becomes the point of local
repair (PLR) by tunneling the BIER packet through the routing
underlay to nodes downstream in the BIER distribution tree.
The tunnel may be affected by the failure, too. However,
FRR mechanisms or timely updates of the FIB in the routing
underlay restore connectivity for unicast traffic faster than for
BIER traffic because recomputation of BIER entries can start
only after the FIB of the routing underlay has been updated.
Tunnel-based BIER-FRR can be configured either for link
protection or node protection. BIER-FRR with link protection
tunnels the BIER packet to the NH where the tunnel header is
removed and the BIER header is processed again. BIER-FRR
with node protection tunnels copies of the BIER packets to all
next-next-hops (NNHs) in the distribution tree.

IV. INTRODUCTION TO P4

In this section we review fundamentals of P4. First, we
give an overview and explain P4 architectures and P4 targets.
Afterwards, we describe the P4 pipeline with its important
components and operations.

A. Overview

P4 is a high-level programming language for protocol-
independent packet processors [3]. A P4 program defines a
data plane that is mapped onto the programmable pipeline
of a P4 device by a target-specific compiler. A programmable
(de)parser, and match+action-tables with arbitrary match fields
and actions allow to use custom packets headers and pro-
gram complex packet processing behavior. During runtime,
the control plane configures the behavior of the P4 devices
by modifying rules of the match+action tables. The first P4
specification P414 [34] has been published in 2014. P416 [35]
from 2016 extends that specification by additional features.

B. P4 Architectures

A P4 architecture is a programming model that isolates the
programmer from the low-level functionality of a platform. It
provides a logical view of the hardware and its features. All
P4 architectures implement the core functionality of P4 but

1When a BFR is established between two nodes, they periodically exchange
notifications about their status.
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often they describe interfaces to architecture-specific features.
Therefore, P4 programs that are written for a specific architec-
ture usually require adaptations to be compatible with other
P4 architectures. The P4 language consortium develops the
Portable Switch Architecture (PSA) [36] which is the reference
architecture of P16: ’the PSA is to the P416 language as the
C standard library is to the C programming language’ [36].
Tofino implements the Tofino Native Architecture (TNA). Due
to NDA restrictions we cannot provide details about the TNA.
However, the TNA is similar to the PSA to which we refer in
the following explanations concerning P4.

C. Targets

A P4 target is a hardware or software platform that im-
plements a particular P4 architecture. Software targets like
the BMv2 [5] are implemented in high-level programming
languages, e.g., C++, to emulate the behavior of a hardware
platform. They can be easily adapted to implement even
the most complex processing pipeline in P4. However, their
throughput is limited because they run on non-specialized
hardware and packet processing is done entirely in software.
Therefore, they are not used in production environments but
often for proof-of-concept implementations, and for validating
and debugging P4 programs.

Hardware targets are P4 platforms that perform packet
processing in hardware. Therefore, hardware targets efficiently
achieve high throughput. However, programming for a hard-
ware target is in general more challenging than for a software
target. In contrast to software targets, the feature set of a
hardware platform is limited, and therefore, implementation of
complex packet processing may be challenging. Furthermore,
they often come with additional constraints, e.g., the number
of actions which can be performed on a packet, to guarantee
certain performance aspects. There are multiple types of P4
hardware targets with different focus like FPGAs, network
interface cards (NICs), and ASICs. Tofino [6] is the only
hardware-based P4 programmable switching ASIC. It is used
in the Edgecore Wedge 100BF-32X [37] switch for flexible
high-speed packet processing.

D. P4 Pipeline

In this paragraph we review the P4 processing pipeline.
We explain its composition, transient and persistent memory,
match+action tables, control blocks, packet cloning and packet
recirculation. Figure 5 shows the concept of the P4 processing
pipeline for the PSA.

1) Composition: The P4 pipeline consists of an ingress
pipeline and an egress pipeline. They process packets in a
similar fashion, i.e., both contain a parser, a match+action
pipeline, and a deparser. When a packet arrives at the switch, it
is first processed by the ingress pipeline. The header fields of
the packet are parsed and carried along with the packet through
the ingress pipeline. The parser is followed by a match+action
pipeline which consists of a sequence of conditional state-
ments, table matches, and primitive operations. Afterwards, the
packet is deparsed and sent to the egress pipeline for further
processing. Finally, the packet is sent through the specified

Ingress pipeline

Regular packet flow Packet flow affected by action

Match
action

Pa
rs

er

Recirculate
CI2E

Action

Match
action

RecirculateD
ep

ar
se

r

Pa
rs

er

D
ep

ar
se

r

Egress pipeline

Figure 5: P4 processing pipeline.

egress port which has to be set in the ingress pipeline and
cannot be changed in the egress pipeline.

The P4 program defines the parser and the deparser, which
allows the use of custom packet headers. In addition, the
P4 program describes the control flow of the match+action
pipeline in the ingress pipeline and egress pipeline, respec-
tively.

2) Control Blocks: Both the ingress and egress pipeline
can be divided into so-called control blocks for structuring.
Control blocks are used to clearly separate functionality for
different protocols like IP, BIER, and Ethernet, i.e., the IP
control block contains MATs and operations that are applied
only to IP packets, etc.

3) Transient and Persistent Memory: Transient memory is
implemented by so-called metadata. Metadata can be com-
pared to variables of other high-level programming languages.
When a packet is processed in the P4 pipeline, it carries
its own instances of metadata through the pipeline until the
packet is sent. Then the metadata of that packet are discarded.
Registers implement persistent memory to store information
independently of packets.

4) Match+Action Tables (MATs): MATs execute packet-
dependent actions by matching packet header fields and/or
metadata against MAT entries. To that end, an entry contains
one or more match fields, and an action set. When a packet
is matched against a MAT, the match fields of the entries
are compared with specified header or metadata fields of the
packet. Each match field has one of four types: exact, longest-
prefix match (lpm), ternary, and range. A match field of the
type exact has to be exactly equal to header field to match.
Lpm is well-known from regular IP matching. Ternary allows
wildcard matching. The range type is used to check whether
the matching value is in a certain interval. Then, the action set
of the matching entry is executed. An action set consists of one
or more actions, e.g., reading or writing a header or metadata
field, mathematical operations, setting the egress port of the
packet, etc. The P4 program defines only the structure of the
MATs, i.e, the match fields and action sets. After startup the
MATs are empty and need to be populated with entries by the
control plane. It is not possible to match a packet on the same
MAT multiple times.

5) Packet Cloning: The operation clone-ingress-to-egress
(CI2E) allows packet replication in P4. It can be called only
in the ingress pipeline. At the end of the ingress pipeline,
a copy of the packet is created. However, the packet copy
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resembles the packet that has been parsed in the beginning
of the ingress pipeline, i.e., the header changes performed
during processing in the ingress pipeline are reverted. This
is illustrated in Figure 6.

Dst. IP: 10.0.0.1 Change Dst.
IP to 10.0.0.2

Parsed packet

CI2E Change Dst.
IP to 10.0.0.2

End of the
ingress pipeline

Dst. IP: 10.0.0.3

Dst. IP: 10.0.0.1

Original packet

Cloned packet

Figure 6: An example of the clone-ingress-to-egress (CI2E)
operation.

If an egress port has been provided as a parameter, the egress
port of the clone is set to that port. Both the original and cloned
packet are processed independently in the egress pipeline. The
cloned packet carries a metadata flag to identify it as a clone.

6) Packet Recirculation: P4 allows to recirculate a packet
for processing it by the pipeline a second time. In [38] the
authors implement a congestion control mechanism in P4 and
leverage packet recirculation to create notification packets,
update their header fields, and send them to appropriate
monitoring nodes. The authors of [39] present a content-based
publish/subscribe mechanism in P4 where they introduce a
new header stack that requires packet recirculation for process-
ing. Uddin et al. [40] implement multi-protocol edge switching
for IoT based on P4. Packet recirculation is used to process
packets a second time after they have been decrypted.

P4 leverages a switch-intern recirculation port for packet
recirculation. When a packet should be recirculated, its egress
port has to be set to the recirculation port during processing in
the ingress pipeline. The flow of a packet through the pipeline
when it is recirculated is shown in Figure 7. The packet is still

Ingress and
egress pipeline

Recirculation port

Switch

Regular port

Figure 7: A packet is recirculated to a recirculation port and
traverses the ingress and egress pipeline for a second time.

processed by the entire processing pipeline, i.e., the ingress
pipeline and egress pipeline. However, after the packet has
been deparsed, it is not sent through a regular physical egress
port but pushed back into the switch-intern recirculation port.
The packet is then processed as if it has been received on
a physical port. The recirculation port has the same capacity
as the physical ports. For example, when two physical ports
receive traffic at line rate and each packet is recirculated once,
the recirculation port receives recirculated packets at double
line rate, which causes packet loss.

To discuss this effect we introduce the term ’recirculation
capacity’. It is the available capacity to process recirculation

traffic. Additional recirculation capacity is provided by using
physical ports in loopback mode. When the forwarding device
switches a packet to an egress port that is configured as a
loopback port, the packet is immediately placed in the ingress
of that port, instead. The packet is then processed as if it has
been received on that port as usual, i.e., by the parser, the
ingress and egress pipeline, and the deparser. Only traffic that
has to be recirculated is switched to recirculation ports. In
the following the term ’recirculation port’ refers to a physical
port in loopback mode, or the switch-intern recirculation
port. When recirculation ports are required, the switch-intern
recircution port should be used first, before any physical ports
are configured as loopback ports.

When multiple recirculation ports are deployed, we use
a round-robin-based distribution approach for recirculation
traffic to distribute the load equally over all recirculation ports.
We store in a register which recirculation port receives the
next packet which should be recirculated. When a packet has
to be sent to a recirculation port, that register is accessed
and updated in one atomic operation. This prevents any race
conditions when traffic is distributed. Thus, the capacity of n
recirculation ports for recirculation traffic is n · linerate.

V. P4 IMPLEMENTATION OF BIER AND BIER-FRR FOR
TOFINO

In this section we describe the P4 implementation of BIER
and tunnel-based BIER-FRR. First, we discuss the imple-
mentation basis. Afterwards, we give an overview of the
implementation followed by details for both IP and BIER
processing. Finally, we explain how port status monitoring is
implemented.

A. Codebase

In [2] we presented a software-based prototype of a P416
implementation of BIER and tunnel-based BIER-FRR for
the P4 software switch BMv2. We provided a very detailed
description of the P4 programs including MATs with match
fields and action parameters, metadata, control blocks, regis-
ters, and applied operations. The prototype and the controller
are publicly available on GitHub2. The P4 implementation
of BIER and tunnel-based BIER-FRR for the Tofino and the
controller can be accessed on GitHub3 by anyone.

B. Summary of the Processing Pipeline

In this paper we give only an abstract characterization of the
control blocks for BIER and IP, and describe their application
in the processing pipeline. P4-related implementation details
about the control blocks can be found in [2].

This paragraph gives a high-level description of the entire
processing pipeline including IP-unicast, IP-multicast, BIER,
and Ethernet forwarding. Figure 8 shows an overview of the
implemented pipeline.

The ethertype in the packet header is used to differentiate
between BIER and IP packets. IP-unicast and IP-multicast

2https://github.com/uni-tue-kn/p4-bier
3https://github.com/uni-tue-kn/p4-bier-tofino
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Figure 8: Overview of the implemented pipeline.

packets are handled by the single IP control block while BIER
packets are handled by the BIER control blocks in the ingress
and egress pipeline. The Ethernet control block changes the
MAC addresses of the packets. The ingress pipeline contains
an IP control block to determine the NH of IP packets. IP
processing includes IP-unicast, where the NH of the packet
is determined according to its destination IP-address, and IP-
multicast whereby traditional multicast groups are used to
forward the packets to the right NHs. The BIER control block
in the ingress pipeline selects the proper NH and F-BM,
computes the BitString and the remaining bits, and invokes
cloning and recirculation of the BIER packet. In the egress
pipeline, IP packets are handled by the Ethernet control block
and sent afterwards. BIER packets are processed by a second
BIER control block which performs header changes on cloned
packets. Afterwards, the MAC addresses of BIER packets are
changed by the Ethernet control block as well, before the
packets are sent.

C. IP Processing

The IP control block processes both IP-unicast and IP-
multicast packets. They are differentiated by their destination
IP address.

1) IP-Unicast: The egress port of an IP packet is deter-
mined by its destination IP address. In addition, we implement
an IP-FRR mechanism based on loop-free alternates (LFAs)
[41] to bypass failures. When a device cannot forward a packet
to the primary NH, it is forwarded to a backup NH that still
has a working shortest path to the destination, instead. To that
end, the switch monitors the status of all its ports. In Section
V-E we explain how port monitoring is implemented. When
an IP unicast packet is received by a node that is the egress
node of an IP-tunnel, the IP header is removed and the packet
is recirculated so that the packet is processed again.

2) IP-Multicast: P4 supports traditional IP multicast for-
warding. For each multicast group, i.e., IP multicast address,
a rule is configured in a forwarding table that stores to which
neighbors the packet should be forwarded. When an IP packet
matches the rule, the switch creates the right number of copies
of the packet and sets the egress ports appropriately. This
feature does not require recirculation or CI2E, but it comes
with the previously discussed disadvantages of traditional
IPMC. IP-multicast processing adds BIER headers to IPMC
packets that should enter the BIER domain. Those packets are
then recirculated for further processing.

D. BIER Processing

First, we describe regular BIER forwarding. Afterwards, we
explain operation of tunnel-based BIER-FRR. We omit IP and
Ethernet processing in the following descriptions to facilitate
readability.

1) BIER Forwarding: Figure 9 shows the processing of a
BIER packet during one pipeline iteration.

Ingress Egress

BIER
BIER

Recirculation port
Path of cloned BIER packet
Path of original BIER packet

Figure 9: Paket flow of a BIER packet in the processing
pipeline.

When the switch receives a BIER packet, it is processed
by the BIER control block in the ingress pipeline. There, the
BitString of the packet is matched against the BIFT which
determines the egress port and the F-BM. The F-BM is applied
to the BitString of the packet and cleared from the remaining
bits. If the remaining bits still contain activated bits, CI2E is
called and the egress port is set to a recirculation port so that
the packet will be processed again. After the ingress pipeline,
the copy is created and both packet instances enter the egress
pipeline independently of each other. The original packet is
sent through an egress port towards its NH. The packet clone
is processed by a second BIER control block in the egress
pipeline which sets the BitString of the packet copy to the
remaining bits. Since the egress port of the packet clone is a
recirculation port, the packet is recirculated, i.e., it is processed
by the ingress pipeline again.

BIER forwarding removes BIER headers from packets that
leave the BIER domain, and adds IP headers for tunneling
through the routing underlay by tunnel-based BIER-FRR.
Whenever a header is added or removed, the packet is re-
circulated for further processing.

When a BIER packet has more than one NH, two challenges
appear. First, the BitString of a BIER packet has to be matched
several times against the BIFT to determine all NHs. However,
matching a packet multiple times against the same MAT is
not possible in P4. Second, multiple packet copies have to
be created for forwarding. However, P4 does not allow to
dynamically generate more than one copy of a packet. There-
fore, we implemented a packet processing behavior where in
each pipeline iteration one packet is forwarded to a NH and
a copy of the packet is recirculated for further processing.
This is repeated until all NHs receive a packet over which at
least one destination of the BIER packet is reached. Figure
10 shows the processing of a BIER packet which has to be
forwarded to three neighbors. In the first and second pipeline
iteration the original BIER packet is sent through a phyiscal
egress port towards a NH and the copied BIER packet is
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Figure 10: BIER processing over multiple pipeline iterations.

recirculated by sending the packet copy to a recirculation
port. In the last iteration when the remaining bits contain no
activated bits anymore, no further packet copy is required and
only the original BIER packet is sent through the egress port.
Therefore, to forward the packet to all of its three NHs, the
packet is recirculated two times. In general, a BIER packet
with n NHs, has to be recirculated n − 1 times and the first
NH can be served without packet recirculation.

2) Forwarding with Tunnel-Based BIER-FRR: The switch
monitors the status of its ports as described in Section V-E.
When the match on the BIFT results in a NH which is reached
by a port that is currently down, the processing of the BIER
packet differs in the following way from the BIER processing
described above. An IP header is added to the original BIER
packet to tunnel the packet through the routing underlay
towards an appropriate node in the BIER distribution tree.
The egress port of the original packet is set to a recirculation
port to process the IP header in another pipeline iteration, i.e.,
forward the IP packet to the right NH.

E. Port Monitoring

FRR reroutes affected traffic on a backup path when the
primary NH is not reachable. To determine which neighbor is
reachable during forwarding, we leverage a register for each
port. Each register stores one bit. If a port is up, the bit in
the corresponding register is activated. If the port is down, the
bit in its corresponding register is deactivated. After the NH
of a packet has been determined, the corresponding register is
examined to determine whether the port is up or down. If the
port is up, the packet can be processed regularly, i.e., without
IP-FRR and BIER-FRR. If the port is down, FRR actions are
executed.

This approach requires reliable updates of the the port status
bits when the port status changes, in particular, when a port
goes down. To that end, we leverage the port monitoring of
the Tofino. As soon as a port goes down, the Tofino generates
a special packet which contains the port number of the port
that went down, and places it in a switch-intern ingress port.
When the packet is processed, the bit in the corresponding
port status register is deactivated.

To activate a bit in a port status register we leverage a
different feature. Our centralized control plane maintains a
view of the entire topology to configure the P4 forwarding
devices appropriately. To that end, it regularly broadcasts

topology packets. As soon as the Tofino receives a topology
packet on a port, we activate the corresponding bit in the port
status register. Depending on the interval in which the topology
packets are sent, this may introduce a brief delay until a port is
recognized as up again, but this is not a time-critical operation.
As soon as a port changes its status, the controller is notified.
It updates its view on the topology, and calculates and installs
new rules on all affected devices.

VI. PERFORMANCE EVALUATION OF THE P4-BASED
HARDWARE PROTOTYPE

In this section we perform experiments to evaluate the
performance of the P4-based hardware prototype for BIER
regarding Layer-2 throughput and failover time, i.e., the time
until BIER traffic is successfully delivered after a network
failure.

A. Failover Time for BIER Traffic
Here we evaluate the restoration time after a failure in three

scenarios and vary the protection properties of IP and BIER.
First, only the IP FIB and BIER FIB are updated by the
controller, respectively, and no FRR mechanisms are activated.
This process is triggered by a device that detects a failure. It
notifies the controller which computes new forwarding rules
and updates the IP and BIER FIB of affected devices. This
scenario measures the time until the BIER FIB is updated
after a failure, which is our baseline restoration time. The
control plane, i.e., the controller, is directly connected to the
P4 switch, which keeps the delay to a minimum in comparison
to networks where the controller is several hops away.

Second, only BIER-FRR is deployed. In this scenario BIER
is able to utilize tunnel-based BIER-FRR in case of a failure.
However, FRR for IP traffic remains deactivated. Thus, IP
traffic can be forwarded only after the IP FIB is updated. Third,
both IP-FRR and BIER-FRR are deployed. This scenario
evaluates how quickly the P4 switch can react to network
failures and restore connectivity of BIER and IP forwarding.

In the following, we first explain the setup and the metric.
Then, we present our results.

1) Experiment Setup: Figure 11 shows the testbed. The
Tofino [6], a P4-programmable switching ASIC, is at the core
of the hardware testbed. We utilize a Tofino based Edgecore
Wedge 100BF-32X [37] switch with 32 100 Gb/s ports. An
EXFO FTB-1 Pro [42] 100 Gb/s traffic generator is connected
to the Tofino to generate a data stream that is as precise
as possible. Furthermore, we deploy two BMv2s that act as
BFRs and BFERs. The traffic generator, the controller and
two BMv2s are connected to the Tofino. The traffic generator
sends IPMC traffic to the Tofino. The IPMC traffic has been
subscribed only by BMv2-1. As long as the link between the
Tofino and BMv2-1 works, the BIER packets are forwarded
on the primary path. When the Tofino detects a failure, it
notifies the controller which computes new rules and updates
forwarding entries of affected devices. In the meantime, the
Tofino uses BIER-FRR to protect BIER traffic, and IP-FRR to
protect IP traffic if enabled. This causes the Tofino to forward
traffic on the backup path via BMv2-2 towards BMv2-1.



9

Traffic generator 

Tofino BMv2

Controller

1

2

IPMC source 

BFIR, BFR, BFER BFR, BFER

Primary path

Backup path

BIER domain

Figure 11: Experimental setup for evaluation of restoration
time.

2) Metric: We disable the link between the Tofino and
BMv2-1 and measure the time until BMv2-1 receives BIER
traffic again. We evaluate different combinations with and
without IP-FRR and with and without BIER-FRR. To avoid
congestion on the BMv2s and the VMs, the traffic generator
sends only with 100 Mb/s, which has no impact on the results.

Figure 12 shows the restoration time for the different de-
ployed protection scenarios, which we discuss in the following.
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Figure 12: Restoration time of BIER w/o FRR, and BIER-FRR
w/ and w/o IP-FRR.

3) Failover Time w/o BIER-FRR and w/o IP-FRR: When
no FRR mechanism is activated, multicast traffic arrives at
the host only after the IP and BIER forwarding rules have
been updated, which takes about 166 ms. The controller is
directly connected to the Tofino. In a real deployment the
controller may be multiple hops away, which would increase
the restoration time significantly.

The same failover time is achieved without BIER-FRR but
with IP-FRR, for which we do not present separate results. As
BIER forwarding entries are updated only after IP forwarding
entries have been updated, the use of IP-FRR in the network
does not shorten the failover time for BIER traffic.

4) Failover Time w/ BIER-FRR but w/o IP-FRR: When
tunnel-based BIER-FRR but not IP-FRR is activated, BMv2-
1 receives multicast traffic after 95 ms. In case of a failure,

BIER-FRR tunnels the BIER traffic through the routing un-
derlay. As soon as IP forwarding rules are updated, multicast
traffic arrives at the host again. Since IP rules are updated
faster than BIER rules, BIER-FRR decreases the restoration
time for multicast traffic even if no IP-FRR mechanism is
deployed.

5) Failover Time w/ BIER-FRR and w/ IP-FRR: In the
fastest and most resilient deployment both BIER-FRR and IP-
FRR are activated. Then, multicast packets arrive at the host
with virtually no delay after only 0.5 ms. In contrast to the
previous scenario, unicast traffic is rerouted by IP-FRR which
immediately restores connectivity for IP traffic.

B. Throughput for BIER Traffic

The P4-based implementation of BIER described in Section
V-D requires recirculation and is limited by the amount of
recirculation capacity. The PSA defines a virtual port for this
purpose. In this section we show the impact of insufficient
recirculation capacity on throughput and the effect when
additional physical recirculation ports, i.e., ports in loopback
mode, are used for recirculation. We validate our experimental
results in Section VI-C based on a theoretical model.

1) Experimental Setup: The experimental setup is illus-
trated in Figure 13. A source node sends IPMC traffic to

Source

1

2

n

BFERs

BFIR BFR

BIER domain

Figure 13: Theoretical setup for evaluation of BIER through-
put.

a BFIR. The BFIR encapsulates that traffic and sends it to
a BFR. The BFR forwards the traffic to n BFERs which
decapsulate the BIER traffic and send it as normal IPMC traffic
to connected subscribers.

The goal of the experiment is to evaluate the forwarding
performance of the BFR depending on the number of NHs.
With n NHs, BIER packets have to be recirculated n−1 times,
and internal packet loss occurs if recirculation capacity does
not suffice. The objective of the experiment is to measure the
BIER throughput depending on the number of recirculation
ports for which only physical loopback ports are utilized in
the experiment. However, the n subscribers may see different
throughput. The first BFER does not see any packet loss
while the last BFER sees most packet loss. Therefore, we
measure the rate of IPMC traffic received on Layer 2 at the
last subscriber.

2) Hardware Setup and Configuration: Due to to hardware
restrictions in our lab, we utilize one traffic generator, one
P4-capable hardware switch, and one server running multiple



10

Traffic generator 

Tofino BMv2

Controller

1

2

4

IPMC traffic
from source

Throughput
measurement

1
BIER traffic 

to BFRs

2

4 IPMC traffic
to subscriber

3

IPMC source and subscriber

BFIR, BFR, BFER BFR, BFER

BIER domain

Figure 14: Hardware setup for evaluation of BIER throughput.

P4 software switches to build the logical setup sketched
above. The hardware setup is shown in Figure 14. The traffic
generator is the source of IPMC traffic and sends traffic to the
BFIR. The traffic generator is also the subscriber of BFER n
and measures the throughput of received IPMC traffic on Layer
2. The hardware switch acts as BFIR, BFR, and BFER n while
BFERs 1 to n − 1 are deployed as P4 software switches on
the server. In addition, we collapse the BFIR and the BFR in
the hardware switch so that packet forwarding from the BFIR
to the BFR is not needed. Therefore, the traffic generator is
the last NH of the BIER packet when it is processed by the
BFR.

Packet recirculation is required after (1) encapsulation to
enable further BIER processing, (2) decapsulation to enable
further IP forwarding, and (3) BIER packet replication to en-
able BIER forwarding to additional NHs. We set up the hard-
ware switch so that all recirculation operations in connection
with encapsulation and decapsulation are supported by two
dedicated ports in loopback mode and spend another k ports
in loopback mode to support packet recirculation after packet
replication. This models the competition for recirculation ports
on a mere BFR as in the theoretical model.

The P4 software switches are BMv2s that run alongside our
controller on VMs on a server with an Intel Xeon Scalable
Gold 6134 (8x 3.2 GHz) and 4 x 32 GB RAM. The P4
hardware switch is a Tofino [6] inside an Edgecore Wedge
100BF-32X [37] which is a 100 Gb/s P4-programmable switch
with 32 ports. The traffic generator is an EXFO FTB-1 Pro
[42] which generates up to 100 Gb/s. All devices are connected
with QSFP28 cables which transmit up to 100 Gb/s.

3) BIER Throughput Depending on Recirculation Ports:
The traffic generator sends IPMC traffic at a rate of 100
Gb/s to the hardware switch, the hardware switch encapsulates
the IPMC traffic, forwards BIER traffic iteratively n-1 times
to BMv2s, recirculates the BIER packet to process the last
activated header bit, decapsulates the traffic as BFER n, and
returns it back to the traffic generator, which measures the

received IPMC rate on Layer 2. These results are compiled in
Fig. 15. We consider 1, 2, 3, and 4 NHs and perform these
experiments with 1, 2, and 3 ports in loopback mode to support
recirculation for BIER forwarding. With a single recirculation
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Figure 15: Experimental throughput of BIER and traditional
IPMC on the 100 Gb/s Tofino-based switch for different
numbers of NHs and recirculation ports.

port, the last NH receives the full IPMC rate of 100 Gb/s if at
most 2 NHs are connected. For 3 or 4 NHs, the IPMC traffic
rate received by the last NH is reduced to 43 and 19 Gb/s,
respectively.

With 2 recirculation ports, the last NH does not perceive a
throughput degradation if at most 3 NHs are connected. For 4
NHs, the IPMC traffic rate received by the last NH is reduced
to 50 Gb/s.

And with 3 recirculation ports, even 4 NHs can be supported
without throughput degradation for the last NH.

Thus our experiments confirm that when multicast traffic
arrives with 100 Gb/s at the Tofino, n-1 recirculation ports are
needed to forward BIER traffic to n NHs without packet loss.
This is different for a realistic multicast portion in the traffic
mix, i.e., a minor fraction instead of 100%.

The hardware switch also supports traditional multicast in
P4. With traditional multicast forwarding, all NHs receive
100 Gb/s regardless of the number of NHs. However, this
comes with all the disadvantages of traditional IPMC we have
discussed earlier.

C. Throughput Model for BIER Forwarding with Insufficient
Recirculation Capacity

We model the throughput of BIER forwarding with insuf-
ficient recirculation capacity and validate the results with the
experimentally measured values.

To forward a BIER packet to n NHs, it has to be recirculated
n− 1 times (see Section V-D). Any time a packet is sent to a
recirculation, the packet is dropped with a certain probability
if insufficient recirculation capacity is available. Due to the
implemented round robin approach (see Section IV-D6), the
drop probability p is equal for all recirculation ports. The drop
probability p in a system can be determined by comparing the
available recirculation capacity and the sustainable recircula-
tion load. The latter results from recirculations after BIER
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packet replication and takes packet loss into account. It is
shown in the following formula.

C ·
n−1∑
m=1

(1− p)m = k · C (1)

The available recirculation capacity is k · C where k is the
number of recirculation ports and C is line capacity. The
sustainable recirculation load is the sum of the successfully
recirculated traffic rates after any number of recirculations.
The traffic amount that has been successfully recirculated once
is C · (1 − p). The traffic amount that has been recirculated
twice is C · (1 − p)2, and so on. Therefore, the total amount
is C ·

∑n−1
m=1(1− p)m.

We calculate the BIER throughput at any NH, i.e., after any
number of recirculations. At the first NH, the throughput of
the BIER traffic is C because the BIER packet is forwarded
to the first NH before the packet is recirculated the first time.
At the second NH, the BIER throughput is C · (1− p), at the
third NH its C · (1 − p)2, and so on. Therefore, the BIER
throughput T (i) at NH 1 ≤ i ≤ n is:

T (i) = C · (1− p)i−1 (2)

Table 2 shows the throughput predictions T (i), and measured
values M(i) from the performance evaluation (see Section
VI-B3). We make predictions for the same scenarios as we
evaluated in the performance evaluation (see Section VI-B3).
The comparison shows that the model provides reasonable
predictions for the BIER throughput.

VII. PROVISIONING RULE FOR RECIRCULATION PORTS

In this section we propose a provisioning rule for recircu-
lation ports. It may be used for general P4-based applications
requiring packet recirculation, not just for BIER forwarding.
We first point out the importance for sufficient recirculation
capacity. Then, we derive a general provisioning rule for
recirculation ports and illustrate how their number depends
on other factors. Finally, we apply that rule to provision the
number of loopback ports for BFRs in the presence of traffic
mixes.

A. Impact of Packet Loss due to Missing Recirculation Ca-
pacity

If recirculation capacity does not suffice and packets need
to be recirculated several times, packet loss observed at the
last stage may be quite high. We first illustrate this effect.
If the packet loss probability due to missing recirculation
capacity is p, then the overall packet loss probability after
n recirculations is p(n) = 1 − (1 − p)n. We illustrate this
connection in Figure 16, which utilizes logarithmic scales to
better view several orders of magnitude in packet loss. With
only one recirculation, we obtain a diagonal for the overall
packet loss. A fixed number of recirculations shifts the entire
curve upwards, and with several recirculations like n = 6
or n = 10, the overall loss probability p(6) or p(10) is an
order of magnitude larger than the packet loss probability p
of a single recirculation step. Therefore, avoiding packet loss
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Figure 16: Loss probability after multiple recirculations.

due to recirculations is important. Thus, sufficient recirculation
capacity must be provisioned but overprovisioning is also
costly since this means that entire ports at high speed cannot
be utilized for operational traffic. Therefore, well-informed
provisioning of recirculation ports is an important issue.

B. Derivation of a Provisioning Rule for Recirculation Ports

We first introduce the recirculation factor R and the utiliza-
tion ratio U . Then, we use them to derive a provisioning rule
for recirculation ports.

The recirculation factor R is the average number of recir-
culations per packet. Not all packets may be recirculated or
the number how often a packet is recirculated depends on the
particular packet.

The utilization ratio U describes the multiple by which a
recirculation port can be higher utilized than a normal port.
For example, if the average utilization of each normal ports
is 10%, the each recirculation port may be operated with
a utilization of 40%, in particular if multiple of them are
utilized. This corresponds to a utilization ratio of U = 4.
We give some rationales for that idea. Normal ports at high
speed are often underutilized in practice because bandwidths
exist only in fixed granularities and usually link speeds are
heavily overprovisioned to avoid upgrades in the near future.
Furthermore, some links operate at lower utilization, others
at higher utilization. Recirculation ports can be utilized to a
higher degree. First, there is no need to keep the utilization of
recirculation ports low for reasons like missing appropriate
lower link speeds as it can be the case for normal ports.
Second, recirculation ports are shared for all recirculation
traffic of a switch so that resulting traffic fluctuations are lower
and the utilization of the ports can be higher than the one of
other ports.

If m incoming ports carry traffic with a recirculation factor
R and a utilization ratio U can be used on the switch, then

m′ =

⌈
m ·R
U

⌉
(3)

describes the number of required recirculation ports.
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1 NH 2 NHs 3 NHs 4 NHs
Recirculation ports: T (1) M(1) T (2) M(2) T (3) M(3) T (4) M(4)
1 100 99.32 100 99.32 38.2 43.3 15.74 19
2 100 99.32 100 99.32 100 99.32 53.14 50.5
3 100 99.32 100 99.32 100 99.32 100 99.32

Table 2: Model predictions for BIER throughput and measured values (Gb/s).

C. Illustration of Required Recirculation Ports

For illustration purposes, we consider a P4 switch with
32 physical (external) ports and one virtual (internal) port in
loopback mode for recirculations. If the capacity of that single
virtual recirculation port does not suffice for recirculations,
physical ports need to be turned into loopback mode as
well and be used for recirculation. All recirculation ports
are utilized in round-robin manner to ensure equal utilization
among them.

Thus, the number of normal ports m plus the number of
recirculation ports m′ must be at most 33, i.e., 32 physical
ports and 1 virtual port. Therefore, we find the smallest
m′ according to Equation 3, so that m + m′ ≤ 33 while
maximizing m. The number of physical recirculation ports is
m′ − 1 as the virtual port can also be used for recirculations.
Figure 17 shows the number of physical recirculation ports
depending on the recirculation factor R and the utilization
ratio U . Thereby, R and U are fractional numbers. While the
number of recirculations for each packet is an integral number,
the average number of recirculations per packet R is fractional.
The number of physical recirculation ports increases with the
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Figure 17: Number of physical ports in loopback mode.

recirculation factor R. Due to the fact that both m and m′ are
integers, the number of physical recirculation ports (m− 1) is
not monotonously increasing because for some R and U the
sum m+m′ amounts to the maximum 33, and to lower values
for other R and U .

The various curves show that the number of required phys-
ical recirculation ports decreases with increasing utilization
ratio U . With a large recirculation factor R ≥ 3 and a low
utilization Ratio U ≤ 3, half of the ports of the 32 port
switch or even more need to be used for recirculation, which
is expensive. However, with small R < 1 and large U > 3 the

number of required physical recirculation ports is low because
most of the traffic does not require packet recirculation, and
due to the large utilization ratio U , the recirculation ports
can cover significantly more traffic than normal ports. It is
even possible that no physical recirculation port is needed if
the recirculation capacity of the internal recirculation port can
cover the recirculation load.

D. Application of the Provisioning Method to Traffic Mixes
with BIER

In this section we make predictions for m′, the number
of recirculation ports, for traffic mixes with typical multicast
portions. We assume different portions of multicast traffic
a ∈ {0.01, 0.025, 0.05, 0.1, 0.2} and different average num-
bers of BIER NHs n ∈ {0, 2, 4, ..., 16}, i.e., each BIER
packet is recirculated n − 1 times on average. Then, we
calculate R = a · (n − 1), and assume U = 4. Again,
we calculate the smallest m′, i.e., like in Equation 3, so
that m + m′ ≤ 33 while maximizing m. Figure 18 shows
the number of physical recirculation ports depending on the
average number of multicast NHs n and the fraction of
multicast traffic a. If the fraction of multicast traffic is low
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Figure 18: Physical ports in loopback mode for traffic mixes
with realistic multicast portions.

like 1%, the capacity of the internal port suffices to serve up
to 13 NHs on average. Moderate fractions of 2.5% multicast
traffic require no physical recirculation port for up to 5 NHs,
1 physical recirculation port for up to 11 NHs, and 2 physical
recirculation ports for 12 and more NHs. With 5% multicast
traffic, the number of required physical recirculation ports
increases almost linearly from zero to 5 with an increasing
number of NHs. Large fractions of multicast traffic, like 10%,
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require up to 8 recirculation ports if the number of NHs is
also large like 16. Under such conditions, 25% of the physical
ports cannot be used for normal traffic forwarding as they are
turned into loopback mode. However, the assumptions seem
rather unlikely as multicast traffic typically makes up only a
small proportion of the traffic.

VIII. CONCLUSION

The scalability of traditional IPMC is limited because core
devices need to maintain IPMC group-dependent forwarding
state and process lots of control traffic whenever topology or
subscriptions change. Therefore, BIER has been introduced by
the IETF as an efficient transport mechanism for IPMC traffic.
State in BIER core devices is independent of IPMC groups,
and control traffic is only sent to border nodes, which increases
scalability in comparison to traditional IPMC significantly. In
addition, there are fast-reroute (FRR) mechanisms for BIER
to minimize the effect of network failures. However, BIER
cannot be configured on legacy devices as it implements a
new protocol with a complex forwarding behavior.

In this paper we demonstrated a P4-based implementa-
tion of BIER with tunnel-based BIER-FRR, IP unicast with
FRR, IP multicast, and Ethernet forwarding on existing P4-
enabled hardware. The target platform is the P4-programmable
switching ASIC Tofino which is used in the Edgecore Wedge
100BF-32X, a 32 100 Gb/s port high-performance P4 switch.
To implement BIER forwarding, the implementation requires
multiple packet recirculations, which may limit the through-
put of BIER traffic if the switch-intern recirculation port is
overloaded. As a remedy, more recirculation capacity can be
added by turning physical ports into loopback mode.

We evaluated the performance of the prototypical hardware
implementation. On the one hand, we showed that BIER-FRR
significantly reduces the restoration time after a failure, and
in combination with IP-FRR, the restoration time is extremely
reduced. We confirmed that the number of recirculation ports
may limit BIER throughput, depending on the number of BIER
next-hops, next-hops and port utilization. We modelled BIER
forwarding, predicted limited throughput due to missing re-
circulation capacity, and validated the results by experimental
values. Furthermore, we proposed a simple method for the
provisioning of physical recirculation ports. We applied that
method to different traffic mixes including multicast traffic and
showed that only very few physical recirculation ports already
suffice to handle realistic loads of multicast traffic with BIER.
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