
1

Robust LFA Protection for Software-Defined
Networks (RoLPS)

Daniel Merling, Steffen Lindner, and Michael Menth
Chair of Communication Networks, University of Tuebingen, Germany

{daniel.merling, steffen.lindner, menth}@uni-tuebingen.de

Abstract—In software-defined networks, forwarding entries on
switches are configured by a controller. In case of an unreachable
next-hop, traffic is dropped until forwarding entries are updated,
which takes significant time. Therefore, fast reroute (FRR)
mechanisms are needed to forward affected traffic over alternate
paths in the meantime. Loop-free alternates (LFAs) and remote
LFAs (rLFAs) have been proposed for FRR in IP networks.
However, they cannot protect traffic for all destinations and some
LFAs may create loops under challenging conditions.

This paper proposes robust LFA protection for software-
defined networks (RoLPS). RoLPS augments the coverage of
(r)LFAs with novel explicit LFAs (eLFAs). RoLPS ranks available
LFAs according to protection quality and complexity for selection
of the best available LFA. Furthermore, we introduce advanced
loop detection (ALD) so that RoLPS stops loops caused by LFAs.
We evaluate RoLPS-based protection variants on a large set of
representative networks with unit and non-unit link costs. We
study their protection coverage, additional forwarding entries,
and path extensions for rerouted traffic, and compare them with
MPLS facility backup. Results show that RoLPS can protect
traffic against all single link or node failures, and against most
double failures while inducing only little overhead. We implement
FRR on the P4-programmable switch ASIC Tofino and provide a
control plane logic based on RoLPS. Measurement results show
that the prototype achieves a throughput of 100 Gb/s, reroutes
traffic within less than a millisecond, and reliably detects and
drops looping traffic.

Index Terms—Software-Defined Networking, P4, Loop-Free
Alternates, Resilience, Scalability

I. INTRODUCTION

Software-defined networking (SDN) separates data plane
and control plane of forwarding nodes. A controller computes
and installs forwarding rules on data plane devices to instruct
them how to process data packets. Packet forwarding is im-
paired when a next-hop becomes unreachable due to a failure,
i.e., a failed link or a failed node. Without controller inter-
action, switches drop affected packets. However, notification
of the controller, recomputation of forwarding rules, and their
installation on data plane devices takes a considerable amount
of time. This outage time is too long, in particular for the
transport of realtime traffic.

In IP networks fast reroute (FRR) mechanisms are used
to quickly reroute packets via pre-computed backup paths
while forwarding entries are recomputed. FRR would also be
helpful in SDN to forward traffic with unreachable next-hops

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-2. The authors alone are responsible for
the content of the paper.

without controller interaction via alternate paths. However,
SDN forwarding devices often have limited forwarding tables
so that adding many forwarding entries for FRR purposes
may be problematic. Loop-free alternates (LFAs) are a well-
known FRR method for IP networks that requires no additional
forwarding entries so that we consider them in this work.
LFAs constitute alternative next-hops that successfully forward
traffic towards the destination when the default next-hop is un-
reachable. The authors of [1] proposed to use LFAs to protect
traffic without controller interaction in SDN-based networks.
However, LFAs suffer from two major shortcomings. First,
they cannot protect traffic for all destinations against single
link failures (SLF) and single node failures (SNF). Second,
some LFAs may cause rerouting loops in case of node failures
or multiple failures.

In previous work [2] we improved the usage of LFAs
in software-defined networks. We introduced explicit LFAs
(eLFAs) based on individual explicit tunnels to protect desti-
nations that cannot be protected by other LFAs. We proposed
advanced loop detection (ALD) to detect and stop loops, which
prevents severe overload that may happen with LFAs in failure
cases. We described loop avoidance (LA), which leverages
ALD, ranks available LFAs according to their protection
quality and overhead, and chooses the best one. Furthermore,
we showed how LA can be implemented in OpenFlow. Finally,
a comprehensive simulation-based evaluation showed that LA
can protect all traffic in SDN networks against SLF and SNF
and with less overhead compared to other FRR methods.

This paper is an extension of [2] with the following
advances. (1) We augment eLFAs with multipoint-to-point
tunnels. This significantly decreases the required number of
additional forwarding entries for explicit tunnels. (2) We
modify ALD so that it can detect and stop loops faster
while being implementable on P4 devices. (3) We update the
simulative evaluations according to the new mechanisms. (4)
We improved the overall presentation, including a renaming of
LA into RoLPS as LA did not capture the entire concept. (5)
We implement a prototype on the P4-programmable switching
ASIC Tofino featuring LFAs, rLFA, eLFA, and ALD, and a
RoLPS-based SDN controller. (6) We demonstrate that the
prototype operates at 100 Gb/s, reroutes traffic within less than
a millisecond, and reliably detects and drops looping traffic.

The paper is structured as follows. In Section II we discuss
related work. Then, we review state of the art for LFAs
in Section III. Section IV introduces eLFAs and ALD for
improved protection of the SDN data plane, and a RoLPS-



2

based control plane logic for that features and existing LFAs.
Section V describes the simulative evaluation methodology
and discusses performance results based on comprehensive
study. We present the implementation of a P4-based hardware
prototype in Section VI. We evaluate its performance in
Section VII by measurements. Finally, we conclude the paper
in Section VIII. A table of acronyms and a glossary are
provided at the end of the paper to facilitate the reading.

II. RELATED WORK

In this section we describe related work. First, we discuss
legacy FRR mechanisms to position LFAs. Then, we review
FRR for SDN.

A. FRR in Legacy Networks

Rai et al. [3], Raj et al. [4], and Papan et al. [5] present
surveys that provide a wide overview of FRR in legacy
networks. Hutchinson et al. [6] discuss the architecture and
design of resilient network systems, i.e., specifying and re-
alizing appropriate components. They review state-of-the-art
contributions and identify future research issues.

1) MPLS Networks: For MPLS [7] two major FRR mech-
anisms have been proposed [8]. One-to-one backup reroutes
packets on preconfigured paths that avoid the failure. Facility
backup tunnels the packets locally around the failure to the
next-hop for link protection, or to the next-next-hop for node
protection. Only recently, the authors of [9] propose a loop
detection mechanism for MPLS. It is based on special MPLS
labels that are pushed on the MPLS header stack when a packet
is rerouted. This allows nodes to detect whether a packet has
already been rerouted.

2) IP Networks: Not-via addresses [10] protect both IP
and MPLS networks. The routing table of a node contains
one additional forwarding entry for every outgoing link.
When the default next-hop is unreachable, those additional
entries are used to deviate the packet from its shortest path
through a tunnel around the failure. This causes a similar
path layout as MPLS facility backup [11]. Failure insensitive
routing (FIR) [12] leverages interface-specific routing tables
to encode failure information. Depending on the ingress in-
terface, packets are rerouted on precomputed backup paths
around the failure. Multiple routing configurations (MRCs)
[13] implement multiple disjoint routing topologies so that
always at least one topology provides a working path towards
the destination despite the failure. For each topology, an entire
set of forwarding entries is required which at least doubles
the amount of forwarding entries. Maximally redundant trees
(MRTs) [14] leverage a similar approach. A red and a blue set
of backup forwarding entries are computed so that at least one
set delivers the packet in case of a failure. However, MRTs
triple the number of forwarding entries in the network and may
lead to extensive backup paths [15]. LFAs can be combined
with MRTs to reduce backup path length and link load [16].
Independent directed acyclic graphs (IDAGs) [17] compute
only two sets of maximally disjoint forwarding entries, i.e.,
doubling the amount of forwarding entries so that one is
working in case of a failure. The authors of [18] encode

failure information in the packet header. Nodes leverage this
information to identify the failure and reroute packets on
disjoint paths around it.

3) LFA-Based Protection: LFAs [19] with either link or
node protection locally reroute packets around the failure
on shortest paths. Therefore, they do not require additional
forwarding entries but cannot protect all destinations. Csikor
et al. [20], [21] increase the number of protected destinations
by optimizing link costs. rLFAs [22]–[24] augment LFAs to
increase the number of protected destinations by rerouting
packets to remote nodes through shortest path tunnels. They do
not need additional forwarding entries but still cannot protect
all destinations. The performance of both LFAs and rLFAs can
be enhanced by adding links to the network [25]. In [26], the
authors present a self-configuring extension for LFAs based
on probes. It installs alternative hops in other nodes to prevent
rerouting loops.

Topology-independent LFAs (TI-LFAs) [27] leverage seg-
ment routing [28] to protect against failures. Segment routing
is based on forwarding instructions in the packet header. To
that end, a header stack defines the operations that are per-
formed by the nodes to process the packet. TI-LFAs leverage
explicit-path tunnels which are defined in the header stack
to reroute packets to arbitrary nodes. They are conceptually
similar to eLFAs which are presented in this work. However,
they require significant state in the packet header and they
depend on segment routing technology.

B. FRR Protection in SDN

We discuss FRR in the context of SDN. We first address
general FRR approaches for SDN and then we discuss related
work for FRR in OpenFlow- and P4-based networks.

1) FRR in SDN: There have been many proposals to make
the SDN control plane more resilient [29]. However, there
are only very few efforts to protect traffic in the data plane.
If the controller is notified about the failure, it may update
its topology, and recompute and install updated forwarding
entries. Sharma et al. [30] measure that recomputation takes
about 80-100 ms. However, the authors clarify that this number
highly depends on the number of affected flows, path lengths,
and traffic bursts in the control network. In particular, it is
likely that the time for rerouting is significantly higher in larger
networks. Da Silva et al. [31] and Chiesa et al. [32] present
surveys that give overviews of FRR in SDN with significantly
faster protection than recomputation of forwarding entries.

2) OpenFlow-Based FRR: FRR capabilities have been in-
troduced in OpenFlow with Version 1.1. The authors of [33]
provide a BFD-based protection scheme for earlier OpenFlow
versions than 1.1. It is based on a bidirectional forwarding de-
tection (BFD) where nodes periodically exchange information
about their reachability. Van Adrichem et al. [34] measure
that failure detection takes about 3-30 ms on the software-
based Open vSwitch depending on the configuration of the
BFD. SlickFlow [35] encodes primary and backup paths in
the packet header to reroute packets when an unavailable
egress port is selected. SPIDER [36] leverages additional
state in the OpenFlow pipeline. Packet labels carry reroute



3

and connectivity information. Braun et al. [1] propose loop
detection for LFAs (LD-LFA) which increases the number
of protected destinations but may erroneously drop packets.
The authors of [37] use labels in the packet header that
carry failure information to trigger rerouting in other nodes.
Cevher et al. [38] implement MRCs in OpenFlow. The authors
of [39] implement multi-topology routing which uses virtual
topologies to provide redundancies in routing tables. If a
failure is detected, packet forwarding is switched to a topology
which is not affected by the failure. BOND [40] optimizes
memory management for backup rules and leverages global
hash tables to accelerate failure recovery.

3) P4-based FRR: P4 does not provide native FRR ca-
pabilities. Therefore, the hardest challenge is to provide the
data plane devices with information about which neighbors
are reachable, i.e., which port is up or down.

Sedar et al. [41] propose to use registers to store information
about which egress port is up or down. Depending on the
port status registers, primary or backup forwarding actions are
triggered. However, the authors depend on a local agent to
populate the registers. Shared Queue Ring (SQR) [42] caches
recent traffic in a delayed queue. If a link failure is detected,
the cached traffic is sent over alternative paths. Lindner et al.
[43] implement 1+1 protection in P4 which replicates traffic,
includes sequence numbers, and sends it over disjoint paths.
The joint head end of those paths deduplicates the traffic.
Hirata et al. [44] implement a FRR scheme in P4 which is
similar to MRCs. Multiple routing topologies with disjoint
paths are deployed. A field in the packet header identifies
the topology which should be used for forwarding. D2R [45]
is a resilience mechanism which works entirely in the data
plane. When a failure is detected, the data plane itself, i.e.,
the failure-detecting switch, recomputes a new path to the
destination. A primitive for reconfigurable fast reroute (PURR)
[46] stores additional egress ports for each destination. During
packet processing, the first working egress port is selected for
forwarding.

III. LFAS: STATE OF THE ART

We review LFAs and remote LFAs (rLFAs) and give an
overview of previous work regarding loop detection for LFAs.

A. LFAs und rLFAs

First, we introduce the concept of LFAs and rLFAs. Then,
we differentiate protection levels for LFAs, i.e., link protection
and node protection. Finally, We point out that LFAs may
generate loops under some conditions.

1) Concept: LFAs [19] have been proposed in the context
of FRR for IP networks to quickly protect traffic against the
failure of links and nodes while primary forwarding entries
are recomputed.

A point of local repair (PLR) denotes a node that detects
an unreachable next-hop and reroutes affected traffic to some
other neighbor. However, some neighbors would send the
traffic back to the PLR, which creates a loop. The other
neighbors can forward the traffic without creating a loop and

NH DPLR

LFA

rLFAN1

Shortest 
path tunnel

Default path
LFA backup path
rLFA backup path

S

N2 N2

Figure 1: In case of a failure, a PLR may reroute a packet to
an LFA or tunnel it via a shortest path to a rLFA. The (r)LFA
then forwards the packet via a shortest path to its destination.

are called loop-free alternates (LFAs). They are used by a PLR
to reroute traffic in case of a failure.

LFAs are illustrated in Figure 1. Traffic is forwarded on
shortest paths. A packet is sent from sender S to destination
D. The default path is via PLR and NH. When PLR cannot
reach its next-hop NH due to a link failure, it cannot reroute the
packet via neighbors S or N1 as they forward traffic towards D
to PLR, which creates a loop. However, PLR may reroute the
packet via LFA which can forward the packet to D. Thus,
the node LFA represents an LFA for PLR with respect to
destination D.

We now assume that NH fails so that LFA has no working
path towards D. If PLR reroutes the packet to LFA, LFA may
use PLR as an LFA and return the packet. Thus, a loop occurs.

Remote LFAs (rLFAs) [22]–[24] have been introduced
to protect more destinations than LFAs by sending packets
through shortest path tunnels to remote nodes. In our example,
the node rLFA is an rLFA for PLR with respect to destination
D. If NH fails, PLR may tunnel the packet to rLFA which
decapsulates the packet and sends it to D via a shortest path.

2) Protection Level: We already observed that some
(r)LFAs protect only against link failures, others protect also
against node failures. The first are classified as link-protecting
(LP), the second as node protecting (NP). A link-protecting
LFA (LP-LFA) forwards traffic to a destination via a path that
avoids a PLR’s failed link. A node-protecting LFA (NP-LFA)
forwards traffic to a destination via a path that avoids a PLR’s
failed next-hop. Thus, NP-LFAs are also LP-LFAs, but not
vice-versa. Therefore, a PLR can protect more destinations
with LP-LFAs than with NP-LFAs. For some destinations,
there may be no LP-LFA or NP-LFA at all. Then, rLFAs
may help. In networks with unit link costs, they can protect
against all single link failures [2], [24], which is not the case
in networks with non-unit link costs.

3) LFA-Generated Loops: Forwarding loops in networks
are problematic for two reasons. First, the traffic cannot reach
its destination. Second, looping traffic consumes bandwidth,
which may lead to packet loss for other traffic. However,
looping traffic does not loop forever because the TTL field
in the IP header limits the number of forwarding hops. As



4

TTL=64 is a typical value, looping traffic can easily waste
the 30-fold of the capacity it would normally occupy on a
link. Therefore, routing loops are detrimental and should be
avoided.

Depending on their protection level (r)LFAs may cause
rerouting loops in specific failure scenarios. We distinguish
and order four failure scenarios: single link failure (SLF) <
single node failure (SNF) < double link failure (DLF) < single
link and single node failure (SLF+SNF).

LP-(r)LFAs do not cause rerouting loops for SLF but they
may cause loops in other scenarios. NP-(r)LFAs prevent loops
for both SLF and SNF [2], but fewer destinations can be
protected by them. In case of multiple failures, even NP-
(r)LFAs may generate loops. Some LP- or NP-(r)LFAs have
the “downstream” property [11] and they avoid loops in case of
multiple failures. However, only a few LFAs have that property
so that only a few destinations can be protected by them. We
do not consider them any further in this study.

B. Loop Detection for LFAs
The authors of [1] propose loop detection based on bit

strings. They use it in combination with LFAs to protect more
destinations by LFAs without suffering from loops. In addition,
they suggest to protect destinations with LFAs with the highest
possible protection level to maximize the coverage against link
and node failures. They call this approach LD-LFA.

1) Loop Detection Based on Bit Strings: The loop detection
in [1] requires a bit string in the packet header to indicate
nodes that have rerouted the packet before. Each node in
the network is associated with a bit position. If a packet is
rerouted, the node activates it bit in the packet’s header. If a
node receives a packet with its corresponding bit activated, the
packet is dropped.

The authors suggest an implementation in OpenFlow but do
not deliver a prototype. An advantage of this approach is that
a packet can be rerouted by multiple nodes. A disadvantage
is the missing scalability. Bit strings in packet headers should
be small. In OpenFlow, MPLS labels may be reused for that
purpose, but they are only 4 bytes long which is not enough
to number all nodes of a large network. Therefore, multiple
nodes may be associated with the same bit. If one of these
nodes reroutes a packet, the packet is dropped if it is received
by another of those nodes. This causes erroneous drops for
rerouted packets.

2) LFA Ranking: For some PLRs there are several LFAs
available for a specific destination. The authors of [1] sug-
gested to prefer NP-LFAs over LP-LFAs in such a case. They
showed for various network topologies that significantly fewer
destinations can be protected by NP-LFAs than by LP-LFAs.
Therefore, they suggested to protect the remaining destinations
with LP-LFAs if possible. In addition, they proposed to utilize
loop detection based on bit strings to avoid rerouting loops
caused by LP-LFAs. They did not consider rLFAs.

IV. ROBUST LFA PROTECTION FOR SOFTWARE-DEFINED
NETWORKS (ROLPS)

LFAs originated from IP networks. They are attractive for
SDN because they entail only little overhead in terms of

additional forwarding state. However, they have three major
shortcomings. They have been designed only for shortest-
path routing based on link costs, they cannot protect all
destinations, and they may cause loops under some conditions.

In the following we explain how LFAs can be applied in
SDN which allows for general destination-based forwarding.
We present explicit LFAs so that all destinations can be
protected in case of a failure, provided they can be physically
reached by a working path. We describe an advanced loop
detection method to detect and stop loops and prevent erro-
neous packet drop after up to n reroute actions. Finally, we
propose how to utilize these components and consider different
protection variants.

A. Applicability of LFAs for SDN
In the context of IP networks, equations considering link

costs are used to classify neighboring nodes into non-LFAs,
LP-LFAs, and NP-LFAs with regard to some destination [11].
Forwarding in SDN does not need to follow shortest path
routing based on link costs, but general destination-based
forwarding may be applied. Therefore, we briefly explain how
(r)LFAs can be used in that context. Essentially, we need to
classify neighboring nodes into no-LFAs, LP-LFAs, and NP-
LFAs. A PLR’s neighboring node is

• no LFA if its standard forwarding procedure forwards the
traffic to the destination via a path containing the PLR.

• an LP-LFA if its standard forwarding procedure forwards
the traffic to the destination via a path that does not
contain the link from PLR to its next-hop towards the
destination.

• an NP-LFAs if its standard forwarding behavior forwards
the traffic to the destination via a path that does not
contain the PLR’s next-hop towards the destination.

This definition can be applied to normal LFAs, rLFAs, and to
eLFAs that are presented later in this section.

Path computation is not a focus of this paper. To limit the
parameter space for ease of understanding, we consider in the
evaluation in Section V link-cost-based forwarding which is a
special case of the more general destination-based forwarding.

B. Explicit LFAs
We first give an example where (r)LFAs cannot protect

a destination. Such destinations can be protected by explicit
LFAs (eLFAs) which are based on explicit tunnels. However,
explicit tunnels require additional forwarding entries. We
propose multipoint-to-point tunnels to minimize their number.

1) Protection through Explicit Tunnels: The network in
Figure 2 forwards traffic on shortest paths based on costs
that are annotated on the links. PLR sends a packet to D
but the primary next-hop is unreachable. Although there is
a physical path via N1 and eLFA, there is no (r)LFA available.
N1 is not an LFA because it sends traffic to D via PLR. eLFA
cannot serve as rLFA because the shortest path from PLR to
eLFA traverses D. The problem can be solved by setting up
an explicit tunnel via N1 to eLFA a priori. If D is no longer
reachable, PLR can send the packet over that explicit tunnel,
and from eLFA the packet reaches D via a shortest path. Thus,
eLFA is an eLFA for PLR with regard to D.



5

4

DPLR

1

eLFAN1
Explicit 
tunnel

Default path
eLFA backup path

1 1

Figure 2: In case of a failure, a PLR may reroute a packet to
an eLFA via an explicit tunnel which then forwards the packet
via a shortest path to its destination. In contrast to rLFAs, the
PLR cannot reach the eLFA via a shortest path.

2) Implementation: Explicit tunnels do not follow standard
paths. Therefore, packets carry an identifier that is used by
nodes to forward the packets on an explicit path. To that end,
the nodes along the explicit path need additional forwarding
entries for the identifier. Additional forwarding entries for
FRR purposes are undesired overhead for the data plane as
they limit scalability. The overhead can be limited by using a
multipoint-to-point structure for the explicit tunnel. That is,
the explicit tunnels towards the same endpoint have paths
that build a destination tree and share the same identifier.
As a result, explicit tunnels from different PLRs to the same
endpoint require only as single forwarding entry along their
overlapping subpaths.

C. Advanced Loop Detection

The loop detection method in [1] suffered from scalability
problems. Therefore, we propose that packets are dropped if
they are rerouted more than n times. This requires only a
counter in the packet header which is increased with each
reroute action. When the counter reaches the limit, the packet
is dropped. We denote this advanced loop detection (ALD).
In our context, we allow a packet to be rerouted twice so that
double failures can be survived.

1) Implementation in OpenFlow: Due to technical restric-
tions of OpenFlow, conditions can be checked only at the
beginning of the forwarding pipeline. However, at that stage,
there is no knowledge about the packet’s next hop and failed
interfaces. Fortunately, it is possible to increase the reroute
counter while rerouting. Thus, only the next-hop of a rerouted
packet can determine whether the packet’s reroute counter
exceeds the limit and then the packet is dropped. This wastes
bandwidth on the last link over which the packet was rerouted.

We provided a more detailed sketch of an OpenFlow-based
implementation of ALD in [2]. That particular proposal was
still based on bit strings. However, it avoids erroneous packet
drops after a single reroute in contrast to the solution in [1].

2) Implementation in P4: P4 offers more implementation
flexibility. Therefore, it is possible to check whether a packet
is rerouted and whether its rerouting counter exceeds the
limit before the packet is forwarded to the egress port. As a
consequence, packets are dropped before transmission, which

does not waste bandwidth. More details about the P4-based
implementation of ALD are given in Section VI-D.

D. RoLPS Protection Variants

With SDN a controller configures flow entries on data
plane devices. Alternative paths can be configured so that
the device can switch over to a secondary next-hop if the
first hop becomes unreachable. The secondary next-hop is
also configured by the controller. In this section we present a
ranking scheme for LFAs to choose the best one as a secondary
next-hop. We further define protection variants and propose a
corresponding nomenclature.

1) LFA Ranking: A controller can classify neighboring and
remote nodes of a potential PLR into LFAs, rLFAs, and eLFAs,
and as LP or NP for a specific destination. These LFAs can be
ranked according to their protection level, i.e., NP is better than
LP. Recall that NP-LFAs are also LP-LFAs, but not vice-versa.
They can also be ranked according to complexity. Normal
LFAs are simplest as they do not require tunneling. eLFAs
are most complex as they entail additional forwarding entries
for explicit tunnels.

Rank LFA Type
0 NP-LFA
1 NP-rLFA
2 NP-eLFA
3 LP-LFA
4 LP-rLFA
5 LP-eLFA

Table 1: Ranking of LFA types according to protection level
and complexity. Preference is given to LFAs with lower rank
number.

With SDN, it is important to have an alternative next-hop
in case the primary next-hop is unreachable as it may take too
long until the forwarding is fixed by the controller. Therefore,
we rank LFAs first according to their protection level and then
according to their complexity. This yields the ranking given in
Table 1. The ranking is used to select the best available LFA
during computation.

2) Protection Variants: We define several protection vari-
ants with respect to loop detection, LFA complexity, and
protection level. The following naming scheme is used: {nLD,
ALD}-{LP, NP}-{LFA, rLFA, eLFA}. Loop detection may
be activated or not {ALD, nLD}. Either the LP property is
sufficient or NP is desired {LP, NP}. Only normal LFAs may
be allowed, normal and rLFAs may be allowed, or normal,
remote, and explicit LFAs are supported {LFA, rLFA, eLFA}.

If a protection variant requires the NP property, the LFA
selection process starts with the search for an LFA of rank 0.
If the search is successful, this LFA is configured as secondary
next-hop for a specific destination, and the algorithm stops.
Otherwise the search continues with the next higher rank
number. This possibly continues up to rank 5. That means, NP-
(e/r)LFAs are preferentially utilized, but LP-(e/r)LFAs may be
used if the destination cannot be protected otherwise. This is
needed, e.g., if the protected next-hop is the destination. If no
LFA has been found for the last rank, there is no physical
connection between PLR and destination.



6

Mechanism C-LFA C-rLFA LD-LFA ALD-NP-rLFA ALD-LP-eLFA ALD-NP-eLFA
(nLD-LP-LFA) (nLD-LP-rLFA) (ALD-NP-LFA)

Loop detection • • • •
Protection against all SLF o o • •
Protection against all SNF •
Additional forwarding entries • •

Table 2: Properties of protection variants.
Legend: o = only for unit link costs; • = independent of link costs.

If a protection variant requires only the LP property, the
LFA selection process starts with the search for an LFA of
rank 3. The algorithm also stops if no LFAs has been found
for the last rank. In that case there is no physical path between
PLR and destination. Note that LFAs of rank 3 may also be NP
as every NP-LFA also fulfills the LP property. LP-LFAs are
just not preferred over NP-LFAs when the protection variant
requires only the LP property.

Protection variants requiring the NP property may still suffer
from loops since some destinations can be protected only with
LP-(e/r)LFAs. For example they occur when the destination
of a flow fails. nLD-LP-LFA and nLD-LP-rLFA leverage only
the classic LP-LFAs [19] and LP-rLFAs [22]. They are widely
used in IP networks and we denote them as the classic LFA
and rLFA variants (C-LFA, C-rLFA). ALD-NP-LFA1 has been
investigated as a preferred protection variant in [1] under the
name LD-LFA.

Table 2 summarizes the protection variants investigated
in our study. It summarizes properties regarding protection
level and complexity. ALD-mechanisms prevent loops in any
failure scenario. *-*-rLFA protect against all protectable SLF
in networks with unit link costs. *-*-eLFA methods achieve
that protection level even in networks with non-unit link
costs. *-NP-eLFA protects even against all protectable SNF
in networks with either unit or non-unit link costs.

V. SIMULATIVE PERFORMANCE EVALUATION OF
LFA-BASED PROTECTION

In this section we analyze the efficiency of LFA-based FRR
mechanisms. First, we describe the methodology. The perfor-
mance metrics of interest are protection coverage, required
amount of additional forwarding entries, and path lengths. We
compare them for RoLPS protection variants and other well-
known FRR mechanisms. Finally, we discuss the presented
results.

A. Methodology

We explain the methodology for the simulation-based eval-
uation. We describe the general approach, and discuss the
topology data set and link costs used in the evaluation.

1) General Approach: We take a network topology includ-
ing link costs and a RoLPS protection variant as input pa-
rameters. Then we compute LFAs according to Section IV-D.
We evaluate different protection variants against various sets
of failure scenarios, i.e., S ∈ {SLF,SNF,DLF,SLF+SNF}

1Approximation of LD-LFAs with better loop detection.

(see Section III-A3). To that end, we consider all source-
destination pairs f ∈ F in the network and analyze how their
traffic is forwarded in a specific failure scenario s ∈ S.

Although RoLPS works for general destination-based for-
warding (see Section IV-A), we limit the evaluation to shortest
paths routing based on link costs to reduce the parameter
space.

2) Network Topologies: We evaluate 205 wide area, com-
mercial, research, and academic networks from the Internet
topology zoo [47] and three typical data center topologies
(fat-tree, DCell, BCube) which were studied in [1]. For each
topology we calculate both average values and maximum
values for the considered metrics. We explain these metrics in
Sections V-B1, V-C1, and V-D1. We visualize the results in bar
diagrams or complementary cumulative distribution functions
(CCDFs).

3) Link Costs: Ciskor et al. [24] show that link costs have
a significant impact on protection properties of LFAs. To
account for that fact, we perform evaluations on then networks
with both unit link cost and non-unit link cost. However, the
topology zoo does not include link costs for all networks.
Therefore, we calculate link costs on all networks as proposed
in [48]. For each link we derive the specific load based on a
homogeneous traffic matrix, shortest paths, and unit link costs.
The link cost of each link is the inverse of its load multiplied
by the largest link load in the network so that the smallest link
cost is 1. Over all topologies this leads to an average link cost
of 6.8 and a coefficient of variation of link costs of 1. Thus,
the generated link costs differ substantially.

B. Protection Coverage

In this subsection we evaluate and compare the coverage of
RoLPS protection variants. First, we explain the metric. Then,
we briefly describe the evaluated protection mechanisms.
Finally, we discuss results for networks with unit link costs
and with non-unit link costs.

1) Metric: We introduce the three terms ’protected’, ’un-
protected’, and ’looped’ to refer to the quality of protection
which is provided by a FRR mechanism for a flow in a specific
scenario that consists of topology, failure scenario, and link
costs. A flow is considered protected in two cases. First, if the
packet is still successfully delivered at the destination although
the path from source to destination was interrupted by a failure.
Second, if a packet is dropped to prevent a loop because the
destination is not reachable anymore. A flow is unprotected if
the packet is dropped although the destination is still reachable.
Finally, a flow is denoted as looped if a microloop was caused
by local rerouting. We report the average fraction of protected,
unprotected, and looped flows over all 208 topologies (see



7

Section V-A2) in bar diagrams. The term coverage refers to
the fraction of protected flows in a scenario.

2) Evaluated Protection Variants: We consider the classic
protection variants C-LFA (nLD-LP-LFA) and C-rLFA (nLD-
LP-rLFA) as well as the LD-LFA (ALD-NP-LFA) from [1].
We further study the new protection variants ALD-NP-rLFA
and ALD-{LP,NP}-eLFA since they have stronger protection
properties.

3) Coverage: In this section we present results for the
number of protected destinations for different failure scenarios.
First, we evaluate unit link cost networks. Then, we discuss
non-unit link cost networks.

a) Networks with Unit Link Costs: Figure Figure 3(a)
shows the coverage in percent for different sets of failure
scenarios in networks with unit link costs. Subfigure 3(a) (i)
shows that only C-LFA and LD-LFA cannot protect all des-
tinations against SLF, i.e., their coverage is less than 100%.
All other protection variants provide full coverage.

Subfigure 3(a) (ii) shows that SNFs cause many rerouting
loops with C-LFA (17%) and C-rLFA (34%). This is mostly
caused by failed destinations. As C-rLFA protect more des-
tinations than C-LFA, they also cause more loops when the
next-hop is the destination. Thus, loop detection is even more
important when C-rLFA is used because more flows loop in
case of node failures than with C-LFA. LD-LFA protects more
traffic (81%) than C-(r)LFA in case of SNF as it preferentially
uses NP-LFAs if available. Moreover, it prevents loops.

The new protection variants have significantly higher cov-
erage. ALD-NP-rLFA protects around 99% of the destinations
with SNF. This results from dropping packets that cannot be
delivered anymore due to a failed destination; if they looped,
the corresponding flow would count as looped. The coverage
of ALD-LP-eLFA is slightly lower, i.e., 94%. This is because
NP-(e/r)LFAs are not preferentially chosen for this protection
variant so that there are more LFAs in use without the NP
property. Finally, ALD-NP-eLFA protects all destinations for
three reasons. First, it leverages rLFAs or eLFAs to provide
protection for destinations that cannot be protected with LFAs.
Second, it uses NP-(e/r)LFAs to protect against node failures
and falls back to unsafe LP-(e/r)LFAs only when (e/r)LFAs
with NP property are not available. Third, ALD detects and
stops all loops that may be caused by LFAs with LP. This
turns flows that cannot reach their destination into protected
flows instead of looped flows.

Subfigure 3(a) (iii) shows the coverage against DLFs. No
mechanism is able to protect all destinations. C-LFA and
LD-LFA protect around 70% of the destinations. C-rLFA
cover more flows (92%). However, protection variants without
loop detection, i.e., C-LFA and C-rLFA, lead to loops. All
newly proposed protection variants achieve roughly the same
coverage, i.e., 96%, and prevent loops.

Finally, Subfigure 3(a) (iv) shows results for SLF+SNF.
They are similar to the results of DLFs, but the fraction
of rerouting loops caused by both C-LFA and C-rLFA is
significantly higher. This is due to node failures which cause
significant rerouting loops for protection variants without loop
detection.

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e 

(%
)

(i) SLF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e 

(%
)

(ii) SNF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e 

(%
)

(iii) DLF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e 

(%
)

(iv) SLF+SNF

Protected Unprotected Looped 

(a) Networks with unit link costs.

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e 

(%
)

(i) SLF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e 

(%
)

(ii) SNF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e 

(%
)

(iii) DLF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e 

(%
)

(iv) SLF+SNF

Protected Unprotected Looped 

(b) Networks with non-unit link costs.

Figure 3: Coverage averaged over 208 topologies depending
on protection method and set of failure scenarios.

b) Networks with Non-Unit Link Costs: Figure Fig-
ure 3(b) shows the coverage for different sets of failure
scenarios in networks with non-unit link costs. Subfigure 3(b)
(i) shows the coverage against SLF. Both C-LFA and LD-
LFA protect only around 60% of the destinations. In networks
with non-unit link costs, C-rLFA cannot protect all destinations
anymore against SLF and achieve only a coverage of 88%.
The same holds for ALD-NP-rLFA. Only the eLFA-based
protection variants are able to protect all destinations against
SLF.



8

Subfigure 3(b) (ii) shows the coverage against SNF. Both
C-LFA and C-rLFA cause many rerouting loops. LD-LFA
prevents loops but protects only 76% of the destinations.
ALD-NP-rLFA and ALD-LP-eLFA protect a higher fraction of
destinations, i.e., 94% and 93%, because they prevent loops of
unsafe LFAs with LP, but they have no suitable backup path for
some node failures. ALD-NP-eLFA protects all destinations
against SNF even in networks with non-unit link costs as it
prevents loops and leverages NP-(e/r)LFAs wherever possible.

Finally, Subfigure 3(b) (iii) and Subfigure 3(b) (iv) present
the coverage for DLF and SLF+SNF. The results are similar
to those from networks with unit link costs, but the coverage
here is slightly lower.

C. Additional Forwarding Entries

We now evaluate the number of additional forwarding
entries. First, we explain the metric. Then, we discuss the
investigated FRR mechanisms. Finally, we present results for
networks with unit link costs and non-unit link costs.

1) Metric: In a network with n nodes, each node maintains
n − 1 forwarding entries for destination-based forwarding.
eLFAs require additional forwarding entries to implement
explicit tunnels. In contrast, both LFAs and rLFAs are based on
shortest paths, and therefore, do not need additional forward-
ing entries. We calculate the average and maximum amount
of additional forwarding entries per node relative to n− 1 for
each network and present the results for all topologies in a
CCDF.

2) FRR Mechanisms under Study: We compare the required
amount of additional forwarding entries only for eLFA-based
RoLPS protection variants as others do not require additional
forwarding entries. We report results for ALD-{LP,NP}-eLFA
as well as for state-of-the-art MPLS-facility-backup (MPLS-
FB-{LP,NP}) with LP and NP property.

3) Results: We present results for the fraction of additional
forwarding entries. First, we evaluate unit link cost networks.
Then, we discuss non-unit link cost networks.

a) Networks with Unit Link Costs: Figure 4(a) shows a
CCDF for the relative amount of additional forwarding entries
for the considered FRR mechanisms in networks with non-unit
link costs. First, we compare LP mechanisms. With MPLS-
FB-LP, in 40% of the networks at least one node requires
120% or more additional entries (max-curve). However, on
average in only 6% of the networks more than 100% additional
entries are needed (avg-curve). The curves for ALD-LP-eLFA
are omitted because this protection variant does not induce any
additional forwarding entries. This is because (r)LFAs alone
protect all destinations against all SLF in networks with unit
link costs. Therefore, explicit LFAs are not needed and no
additional forwarding entries are required.

Now, we compare NP mechanisms. MPLS-FB-NP requires
most additional entries by far. 62% of the topologies have at
least one node that requires 200% or more additional entries.
And in 40% of the topologies 100% or more additional entries
are required on average. ALD-NP-eLFA is significantly more
efficient. There is no topology with a node that requires more
than 70% of additional entries. 90% of the networks require

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
Additional entries x (%)

P
(X

 >
 x

)

avg
max

ALD-NP-eLFA 
MPLS-FB-LP
MPLS-FB-NP

(a) Networks with unit link costs. ALD-LP-eLFA does not induce any
additional entries and is omitted in the figure.

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
Additional entries x (%)

P
(X

 >
 x

)

avg
max

ALD-LP-eLFA 
ALD-NP-eLFA 
MPLS-FB-LP
MPLS-FB-NP

(b) Networks with non-unit link costs.

Figure 4: CCDFs for fraction of additional forwarding entries.

only 15% or less additional entries on average. This is because
ALD-NP-eLFA protects most of the destinations by NP-rLFAs
and only the few remaining destinations are protected by
eLFAs which induce forwarding state in the network.

Thus, ALD-{LP,NP}-eLFA require significantly less entries
than MPLS-FB-{LP,NP}, i.e., they can be considered as very
efficient with regard to overhead in forwarding tables.

b) Networks with Non-Unit Link Costs: Figure 4(b)
shows a CCDF for the relative amount of additional forward-
ing entries for the considered FRR mechanisms in networks
with non-unit link costs. Again, we compare LP mechanisms
first. MPLS-FB-LP requires lots of additional entries. Around
55% of the topologies have at least one node that requires
120% or more additional entries (max-curve). However, in
only 8% of the networks more than 100% additional entries
are needed on average (avg-curve). Now, ALD-LP-eLFA must
make use of explict LFAs to protect all destinations. However,
there is no topology with a node that requires more than 80%
of additional entries and in 95% of the networks less than 15%
additional entries are needed on average.

Now we compare NP mechanisms. MPLS-FB-NP requires
most additional entries by far. 75% of networks have at least
one node that requires 120% or more additional entries, 40%
even more than 340%. In around 44% of the networks, 100%
or more entries are required on average, and in 8% of the



9

networks even 250% or more additional entries are required.
ALD-NP-eLFA is significantly more efficient. No network
contains a node that requires more than 80% additional entries.
In 90% of the networks, less than 30% additional entries are
required on average.

Thus, in networks with non-unit link costs, somewhat more
additional entries are needed but ALD-{LP,NP} still requires
significantly less entries than MPLS-FB-{LP,NP}.

D. Path Lengths

In this section we report results for path lengths. First, we
explain the metric and evaluated FRR mechanisms, then, we
present the results.

1) Metric: We measure the path lengths of all flows that
are affected by SLF but were successfully delivered due to
local rerouting. For each topology, we calculate the average
and maximum path lengths and present the results for all
topologies in a CCDF.

2) Reroute Mechanisms under Study: We choose path
lengths for rerouting as a baseline which recomputes shortest
paths after a failure. We compare these results to the ones for
ALD-{LP,NP}-eLFA and MPLS-FB-{LP,NP}.

3) Results: Figure 5 shows a CCDF for average and max-
imum path lengths of successfully delivered flows with SLF
in networks with unit link costs.

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30
Path length l (hops)

P
(L

 >
 l)

Rerouting
ALD-LP-eLFA
ALD-NP-eLFA
MPLS-FB-LP
MPLS-FB-NP

avg

max

Figure 5: CCDF for path lengths of successfully delivered
flows for SLF in networks with unit link costs.

We observe that rerouting leads in fact to the shortest
maximum and average path lengths. All FRR mechanisms
under study lead to longer maximum and average path lengths.
The path lengths of the different FRR mechanisms does not
differ.

The same analysis in networks with non-unit link costs
leads to slightly longer paths but without any further insights.
Therefore, we omit the corresponding figure.

E. Discussion

We investigated various RoLPS protection variants with
regard to protection coverage, additional forwarding entries,
and path lengths on a set of 208 topologies with both unit

link costs and non-unit link costs, and compared them with
MPLS-facility-backup.

The evaluations of protection coverage showed that C-LFA
cannot protect many destinations in case of link failures. C-
rLFAs can protect all destinations in case of SLF in networks
with unit link costs. However, the usage of C-(r)LFA leads to
many loops in case of node failures. The use of ALD avoids
such loops. LD-LFA [1] prevents loops but cannot protect all
destinations. ALD-NP-eLFA protects all destinations against
SLF and SNF in networks with unit and non-unit link costs
because it leverages eLFAs to complement (r)LFAs.

The explicit LFAs induce additional forwarding entries in
the data plane, which is not desired. Therefore, we compared
the additional forwarding entries for ALD-{LP,NP}-eLFA and
MPLS-FB-{LP,NP}. The new mechanisms requires only very
few additional entries compared to MPLS facility backup.
Both MRCs [13] and IDAGs [17] always require 100%
additional entries, and MRTs [14] need 200% more. Not-via
addresses [10] need 100% · d more entries where d is the
average node degree. Therefore, ALD-{LP,NP}-eLFA can be
considered very lightweight which makes them attractive for
FRR in SDN.

All evaluated FRR mechanisms, i.e., ALD-{LP,NP}-eLFA
and MPLS-FB-{LP,NP} extend backup paths by about the
same, and backup paths are only slightly longer than the
average and maximum length of recomputed shortest paths.

VI. IMPLEMENTATION OF ROLPS IN P4

We start with a short introduction of P4 and the implemen-
tation platform. Then we summarize important basics of P4
and describe the implementation of the RoLPS prototype.

A. Overview of P4 and the Implementation Target

P4 is a high-level programming language for protocol-
independent packet processors [49]. P4 programs are mapped,
i.e., compiled, to the programmable processing pipeline of
so-called targets, e.g., the software switch BMv2 [50] or
the switching ASIC Tofino [51]. When a P4 program is
successfully compiled for a target, it offers an API to let the
control plane configure the device during runtime, e.g., to write
forwarding entries.

In [2] we sketched how the predecessor of RoLPS could
be implemented in OpenFlow. However, due to technical
restrictions of OpenFlow the implementation concept required
multiple workarounds which made it complex (see Section
III-B1 and Section IV-C1). P4 offers significantly more flexi-
bility than OpenFlow. It allows a flexible description of the
data plane, in particular, the definition of arbitrary packet
headers and packet parsers, and conditional application of
programmable match+action tables (MATs). Therefore, imple-
mentation of novel features in P4 is easier than in OpenFlow.

In this paper we describe the implementation of RoLPS
in P4. Our target is the P4-programmable high-performance
switching ASIC Tofino [51] which is used in the Edgecore
Wedge 100BF-32X [52] switch with 32 100 Gb/s ports. We



10

made the source code for the RoLPS data plane and control
plane publicly available2.

B. P4 Pipeline

Figure 6 illustrates the abstract forwarding model of P4. A
user-programmable parser extracts the information from the
packet header and stores them in so-called header fields. They
are carried with the packet through the processing pipeline,
possibly with additional metadata which are similar to reg-
ular variables from other high-level programming languages.
Metadata are packet-specific and discarded after the packet is
sent to an egress port.

Ingress pipeline Egress pipeline

Pa
ck

et
 b

uf
fe

r

Pa
rs

er Match
action D

ep
ar

se
r

Match
action

Figure 6: P4 abstract forwarding model according to [49].

The P4 abstract forwarding model is divided into two stages,
the ingress and the egress pipeline, which are separated by a
packet buffer. Match+action tables (MATs) allow for packet-
specific processing. They have entries consisting of custom
match fields and types that map header fields and metadata to
actions, e.g., modifying header fields, and parameters.

P4 offers three match types: exact, longest-prefix match
(LPM), and ternary. For an exact match the header field or
metadata field must be exactly the same as the match field in
the MAT, e.g., a specific IP address. LPM is well-known from
standard IP forwarding. Ternary facilitates wildcard matches.
P4 does not allow to match a packet multiple times on the
same MAT to prevent processing loops.

After the egress pipeline, the deparser writes the potentially
modified header fields into the packet header and the packet
is sent through the specified egress port.

However, P4 does not support FRR natively. Port status
information cannot be accessed by the data plane by default.
This makes the implementation of FRR in P4 a serious
challenge.

C. Implementation of LFAs

First, we describe how the port status can be determined
in P4. Afterwards, we describe the implementation of LFAs
without tunnels followed by LFAs with tunnels, i.e., rLFAs
and eLFAs, and ranking-based selection of LFA types.

1) Port Status Detection in P4: Executing backup actions,
e.g., forwarding to an LFA, requires a reliable and timely
detection when a port goes down. However, P4 does not
support such a feature. In [53] we proposed a workaround for
the Tofino platform which detects port-down events within 1
ms without controller interaction. We leverage this workaround

2https://github.com/uni-tue-kn/p4-lfa

to implement RoLPS-based protection and summarize it in the
following.

Registers in P4 provide persistent storage, i.e., their content
survives processed packets. The individual register fields can
be accessed by an index. We leverage a register to store the
current status of the egress ports by single bits (0: down, 1:
up). Each register field stores the status of one port, i.e., one
bit. The port ID serves as an index to access the corresponding
register field. The challenge is updating the registers when the
port status changes, which is platform-specific.

Port-down events are tracked as follows. Tofino has means
outside the P4 programmable data plane to detect port-down
events. We configured the Tofino such that it creates a ‘port-
down packet’ in case of a port-down event. The packet
contains the ID of the corresponding port and the packet is
sent to a switch-intern port. We programmed the p4 pipeline
such that the port status register for the respective port is set
to zero upon reception of a port-down packet.

Port-up events are tracked differently. When the Tofino
receives a packet over a specific port, it activates the status
bit of that port in the register. To ensure that port-up events
are detected sufficiently fast, we take advantage of topology
packets that are regularly sent by the Tofino to all egress ports
for neighbor detection. The frequency for topology packets can
be configured to an appropriate value. While the detection of
port-down events is time-critical, detection of port-up events is
more relaxed because FRR mechanisms reroute affected traffic
in the meantime via alternative ports.

2) Implementation of LFAs without Tunnels: As described
in the previous section, the register fields provide information
whether specific egress ports are up or down. However, the
egress port of a packet is known only after matching the packet
on a MAT. To mitigate this problem, we implemented FRR as
shown in Figure 7. First, the packet is matched against a MAT

IPv4

FRR

Egress port up

de
pa

rs
er

Egress port down

pa
rs

er

Ingress pipeline Egress 
pipeline

Figure 7: P4 implementation of FRR. A packet is matched
against an IPv4 forwarding MAT to determine its egress port.
If that port is down, the packet is matched against a FRR-MAT
to determine its backup egress port.

that performs regular IPv4 routing, i.e., it determines the next-
hop and thereby the egress port of a packet. Second, the ID of
the selected egress port is used to access the register fields to
retrieve the port status of that egress port. If the egress port is
up, the packet is forwarded. If the port is down, FRR actions
are triggered, i.e., the packet is matched against a FRR-MAT
using the IP destination address and the ID of the failed egress
port. This selects a backup entry with a preinstalled LFA, i.e.,
backup egress port, for forwarding.

3) LFAs with Tunnels: LFAs with tunnels are implemented
in a similar way as LFAs without tunnels. However, the



11

backup actions in the FRR-MAT contain an encapsulation
action which adds an additional IP header to the packet for
tunneling to the remote node, i.e., the rLFA or eLFA. When
the eLFA is installed on a PLR, the controller also sets up an
explicit tunnel in the nodes along the path of the tunnel. To
that end, it calculates appropriate tunnel-specific forwarding
entries and configures them on the corresponding forwarding
devices.

4) Implementation of Ranking-Based Selection of LFA
Types: The ranking-based selection of LFAs as described
in Section IV-D is part of the control plane. The controller
precomputes appropriate LFA types depending on the desired
protection variant and installs corresponding egress ports and
encapsulation actions in the FRR-MATs of the data plane
devices.

D. Implementation of ALD

We implement ALD so that it allows two redirects, i.e., the
packet is dropped when it has to be rerouted a third time. To
that end, we define the ALD field as a 2-bit custom header
field in the packet header. These bits track how often a packet
has been rerouted. Packets initially carry the bit pattern ‘00’ in
the ALD field. When a node reroutes a packet with bit pattern
‘00’, it replaces the bit pattern with ‘01’. When a node reroutes
a packet with bit pattern ‘01’, it replaces the bit pattern with
‘10’. When a node cannot forward a packet with bit pattern
‘10’ due to a failed egress port, it drops the packet.

VII. HARDWARE-BASED PERFORMANCE EVALUATION

In this section we conduct a performance evaluation of the
RoLPS hardware prototype. It is based on the Tofino [51], a
P4-programmable switch ASIC, which is used in the Edgecore
Wedge 100BF-32X [52], a switch with 32 100 Gb/s ports. We
present measurement results for throughput, restoration time,
and loop detection.

A. Throughput

Every P4 program successfully compiled for the Tofino
processes packets at a speed of 100 Gb/s. To verify that
property for our prototype, we conducted the following ex-
periment. We utilized an EXFO FTB-1 Pro traffic generator
[54] which generates up to 100 Gb/s of traffic. We connected
it to the Tofino which processes the traffic and sends it back
to the traffic generator. This way we measure the traffic rate
forwarded by Tofino. In fact, we obtained a throughput of
100 Gb/s for both failure-free forwarding and forwarding with
activated FRR.

B. Restoration Time

The evaluation of restoration times is more complex. We
describe the testbed, the measurement procedure and metric,
as well as the experimental scenarios. Then, we present
measurement results.

1) Testbed: Figure 8 shows the testbed for the performance
evaluation. Center of the testbed is the above mentioned
Tofino.

Traffic generator 

Tofino BMv2

Controller

Backu
p path

Pr
im

ar
y 

pa
th

Additional 
network

1 2

Figure 8: Topology for restoration time measurements. The
additional network consists of five other BMv2s and 10 links.

It is connected to two BMv2 [50] P4 software switches.
To perform evaluations for more realistic network sizes, we
connected the Tofino to an additional network which consists
of five BMv2s and 10 links. All BMv2s run on a server with an
Intel Xeon Gold 6134 with 3.2 GHz and 12 cores, and 32 GB
RAM. A controller is connected to the Tofino and all BMv2s.
It configures them upon start, i.e., it discovers the topology,
and computes and installs appropriate forwarding rules. It runs
on the same server as the BMv2s. Furthermore, the above
mentioned traffic generator is connected to the Tofino and
serves as a traffic source in the experiment.

2) Measurement Procedure and Metric: The traffic gener-
ator sends traffic to the Tofino which forwards the packets on
the primary path to the destination BMv2-1. BMv2-1 monitors
the packet arrivals. Then, we deactivate the link from Tofino
to BMv2-1 on the primary path to trigger a port-down event
at the Tofino. We derive the restoration time for the FRR
mechanism from a tcpdump log at BMv2-1. It is the duration
of the interval within which BMv2-1 does not receive any
packets.

In these experiments, the traffic generator sends only with
100 Mb/s instead of 100 Gb/s. This avoids overload on the
BMv2s which can process packets only with around 900 Mb/s
[55]. Avoiding overload is important only to obtain correct
measurement results from BMv2-1. The restoration time on
the Tofino is not affected by any overload.

3) Experiments: We perform two experiments to measure
the restoration time without and with FRR.

a) Forwarding without FRR: For this experiment we
disabled the FRR feature on Tofino. When the Tofino detects
the failure, it notifies the controller. The controller then updates
its topology, computes new forwarding entries, and installs
them on the affected devices so that traffic can be forwarded
again.

b) Forwarding with FRR: In this experiment the FRR
feature is enabled. Thus, if BMv2-1 is no longer reachable,



12

the Tofino forwards traffic destined to BMv2-1 to BMv2-2
which relays the traffic to BMv2-1.

4) Results: We performed the above described experiments
10 times. Figure 9 shows the average restoration time without
and with FRR on the Tofino, including 95% confidence
intervals.

86.3 0.64

0

25

50

75

100

w/o FRR w/ FRR

R
es

to
ra

tio
n 

tim
e 

(m
s)

Figure 9: Restoration time on Tofino without and with FRR.

If FRR is disabled, traffic is delivered again after 86 ms.
As rerouting without FRR requires controller interaction, the
measured restoration time depends on controller load, network
size, and communication delay. In this experiment, there is
only a single flow affected by the faiure, the overall network
is small despite the additional network, and the controller is
directly connected to the Tofino. Therefore, the experimental
result for the restoration time is likely lower than restoration
times in production networks.

If FRR is enabled, traffic is delivered after a small restora-
tion time of 0.6 ms. Here, the switchover from primary egress
port to backup egress port at the Tofino is independent of
controller load, network size, and communication delay as
FRR is a switch-local mechanism. Thus, restoration times can
be greatly reduced by FRR on P4-capable hardware. More-
over, the mechanism is general enough to support all RoLPS
protection variants by appropriate configuration through the
controller.

C. Loop Detection

We experimentally evaluate the capability of ALD to detect
and stop loops. We present the modified testbed, explain two
different experiments and the studied metric, and finally we
discuss measurement results.

1) Testbed: Figure 10 shows the testbed. The Tofino is
now conntected to two BMv2s (BMv2-1, BMv2-2) which are
also connected with each other. The controller configures the
Tofino and all BMv2s with available LP-LFAs upon startup. In
the experiments, the traffic generator sends a packet towards
BMv2-1. The Tofino has BMv2-2 as an LFA when BMv2-
1 is not reachable. Likewise, BMv2-2 has the Tofino as an
LFA when BMv2-1 is not reachable. If BMv2-1 fails, traffic
destined to that node loops between the Tofino and BMv2-2.
However, the TTL in the IP header is set to 64 when sent by
the traffic generator and decremented whenever forwarded by
a node. The packet is dropped when its TTL reached 0.

2) Experiments and Metric: We perform two experiments
with ALD disabled and ALD enabled on the switches. We
track packet arrivals at BMv2-2 using tcpdump. Thereby we
can observe how often a looping packet is received.

Traffic generator 

Tofino BMv2

Controller Primary path

Backup path

2

1

Figure 10: Testbed for evaluation of ALD.

3) Results: Figure 11 illustrates a log of packet arrivals at
BMv2-2, starting with time 0 at first packet arrival. Without

w/o ALD

w/ ALD

0 59 118 177 236
Packet arrival time (ms)

Figure 11: Packet arrivals at BMv2-2 without and with ALD.

ALD, BMv2-2 receives the packet 32 times. Thus, the packet
looped between the Tofino and BMv2-2 until it was dropped
due to TTL=0. With ALD, BMv2-2 receives the packet only
once. It then redirects the packet to the Tofino which then
drops the packet at the attempt to reroute the packet for the
third time. Therefore, BMv2-2 receives the packet only once.

VIII. CONCLUSION

In this paper we presented robust LFA protection for
software-defined networks (RoLPS). It leverages loop-free
alternates (LFAs) and remote LFAs (rLFAs) known from
IP networks to forward traffic over alternative next-hops if
primary next-hops are not reachable. However, this alone
cannot protect all destinations against failures and may cause
forwarding loops under challenging conditions. Therefore, we
proposed explicit LFAs (eLFAs) using explicit tunnels to cover
all destinations, and advanced loop detection (ALD) to stop
forwarding loops. These mechanisms are simple and do not
require controller interaction. We suggested various protection
variants that utilize (e/r)LFAs with different protection quality
and complexity.

We evaluated RoLPS through simulations based on 208
representative topologies. The results revealed that existing
(r)LFAs cannot provide all destinations and lead to substantial
forwarding loops in case of node failures. More elaborate
RoLPS variants with eLFAs and ALD, e.g., ALD-NP-eLFA,
protect all traffic against all single link or node failures in



13

networks with both unit and non-unit link costs. Further-
more, they protect most destinations against multiple failures
(> 90%) and prevent forwarding loops. A drawback of eLFAs
is that they required additional forwarding entries. However,
our evaluation showed that RoLPS protection variants require
only very few eLFAs, in particular compared to other FRR
mechanisms such as MPLS facility backup, MRTs, MRCs,
IDAGs, or not-via addresses. Thus, the full protection coverage
against single link or node failures together with the need
for only a few additional forwarding entries make RoLPS
attractive for software-defined networks. In addition, RoLPS
protection variants extends lengths of backup paths compared
to those of shortest path recomputation, but there is no visible
difference to backup path lengths with MPLS facility backup.

We implemented a P4-based prototype that features RoLPS-
based protection variants. The source code is publicly avail-
able. A measurement study showed that the prototype achieves
a throughput of 100 Gb/s, restores connectivity in less than 1
ms including failure detection, and reliably detects and stops
forwarding loops.

ACKNOWLEDGMENT

The authors acknowledge the support from BelWü for
borrowed high-performance hardware that was used in the
measurement-based experiments. Likewise, we appreciate the
work of Irene Müller-Benz for the development of an early
prototype of RoLPS.

ACRONYMS AND GLOSSARY

FRR fast reroute
PLR point of local repair
LFA loop-free alternate [19]
rLFA remote LFA [22], [23]
eLFA explicit LFA [2]
TI-LFA topology-independent LFA [27]
MPLS multiprotocol label switching [7]
MRT maximally redundant tree [14]
IDAG independent directed acyclic graph [17]
MRC multiple routing configuration [13]
SLF single link failure
SNF single node failure
DLF double link failure
LP link protecting
NP node protecting
ALD advanced loop detection
RoLPS robust LFA protection for SDN

Table 3: Acronyms.

REFERENCES

[1] W. Braun and M. Menth, “Loop-Free Alternates with Loop Detection
for Fast Reroute in Software-Defined Carrier and Data Center Net-
works,” Journal of Network and Systems Management, vol. 24, 2016.

[2] D. Merling, W. Braun, and M. Menth, “Efficient Data Plane Protection
for SDN,” in IEEE Conference on Network Softwarization (NetSoft),
Jun. 2018.

[3] S. Rai, B. Mukherjee, and O. Deshpande, “IP Resilience within an
Autonomous System: Current Approaches, Challenges, and Future
Directions,” IEEE Communications Magazine, vol. 43, 2005.

[4] A. Raj and O. Ibe, “A Survey of IP and Multiprotocol Label Switching
Fast Reroute Schemes,” Computer Networks, vol. 51, no. 8, 2007.

Point of local
repair (PLR)

A node that cannot forward a packet to the default
next-hop because of a failure. It executes precomputed
backup actions to locally reroute packets around the
failure.

Loop-free
alternate (LFA)

Alternative next-hop that successfully forwards failure-
affected traffic towards the destination. Simple LFAs
cannot protect all destinations.

rLFA Remote nodes in the network that successfully forward
traffic towards the destination. PLRs reach rLFAs
through shortest path tunnels. rLFAs protect more
destinations than LFAs. However, they cannot protect all
destinations against SLF in non-unit link cost networks
or SNF in general.

eLFA Similar to rLFAs. However, PLRs reach eLFAs through
explicit tunnels implemented by additional forwarding
entries. eLFAs protect against all SLF and SNF
independent of link costs. Multipoint-to-point tunnels
reduce the number of additional forwarding entries.

Link protecting
(LP)

A link protecting (e/r)LFA avoids the link between PLR
and next-hop. They may cause rerouting loops for SNF.

Node
protecting (NP)

A node protecting (e/r)LFA avoids the next-hop. There
are significantly less NP-(e/r)LFAs than LP-(e/r)LFAs.
NP implies LP, i.e., it is the stronger property.

Loop detection
(LD) [1]

A mechanism to detect and stop rerouting loops caused
by LFAs. May erroneously drop packets.

LD-LFA [1] LD-LFA preferably uses NP-LFAs for protection. Only
when no NP-LFA is available, LP-LFAs are used
to increase the number of protected destinations. In
addition, LD-LFA leverages loop detection to prevent
loops.

Advanced
loop detection
(ALD)

A mechanism to detect and stop loops caused by LFAs.
Allows to reroute a packet two times to cope with
double failures.

Robust LFA
protection for
SDN (RoLPS)

Protection concept presented in this paper. It defines
eLFAs and ALD. RoLPS ranks (e/r)LFAs and selects the
best one. Uses ALD to detect and stop loops.

Table 4: Glossary.

[5] J. Papan, P. Segeč, P. Palúch, and L. Mikus, “The Survey of Current
IPFRR Mechanisms,” in Federated Conference on Software Develop-
ment and Object Technologies, Dec. 2017.

[6] D. Hutchison and J. P. Sterbenz, “Architecture and design for resilient
networked systems,” Computer Communications, vol. 131, 2018.

[7] E. Rosen, A. Viswanathan, and R. Callon, Multiprotocol Label Switch-
ing Architecture, https://tools.ietf.org/html/rfc3031, Jan. 2001.

[8] Ping Pan and George Swallow and Alia Atlas, RFC4090: Fast Reroute
Extensions to RSVP-TE for LSP Tunnels, https://tools.ietf.org/html/
rfc4090, May 2005.

[9] K. Kompella and W. Lin, No Further Fast Reroute, https://tools.ietf.
org/html/draft-kompella-mpls-nffrr-00, Mar. 2020.

[10] S. Bryant, S. Previdi, and M. Shand, RFC6981: A Framework for IP
and MPLS Fast Reroute Using Not-Via Addresses, http : / /www.rfc-
editor.org/rfc/rfc6981.txt, Jul. 2013.

[11] R. Martin, M. Menth, M. Hartmann, T. Cicic, and A. Kvalbein, “Loop-
Free Alternates and Not-Via Addresses: A Proper Combination for IP
Fast Reroute?” Computer Networks, vol. 54, 2010.

[12] S. Nelakuditi et al., “Fast Local Rerouting for Handling Transient Link
Failures,” IEEE/ACM Trans. on Networking, Apr. 2007.

[13] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Fast IP
Network Recovery Using Multiple Routing Configurations,” in IEEE
Infocom, Apr. 2006.

[14] A. Atlas, C. Bowers, and G. Enyedi, RFC7812: An Architecture for
IP/LDP Fast Reroute Using Maximally Redundant Trees (MRT-FRR),
http://www.rfc-editor.org/rfc/rfc7812.txt, Jun. 2016.



14

[15] M. Menth and W. Braun, “Performance Comparison of Not-Via
Addresses and Maximally Redundant Trees (MRTs),” in IEEE/IFIP
IM, Apr. 2013.

[16] K. Kuang, S. Wang, and X. Wang, “Discussion on the Combination of
Loop-Free Alternates and Maximally Redundant Trees for IP Networks
Fast Reroute,” in IEEE International Conference on Communications,
Jun. 2014.

[17] S. Cho, T. Elhourani, and S. Ramasubramanian, “Independent Directed
Acyclic Graphs for Resilient Multipath Routing,” IEEE/ACM Trans-
actions on Networking, vol. 20, Feb. 2012.

[18] S. S. Lor, R. Landa, and M. Rio, “Packet re-cycling: Eliminating packet
losses due to network failures,” in ACM Workshop on Hot Topics in
Networks, 2010.

[19] A. Atlas and A. Zinin, RFC5286: Basic Specification for IP Fast
Reroute: Loop-Free Alternates, http://www.rfc-editor.org/rfc/rfc5286.
txt, 2008.

[20] L. Csikor, M. Nagy, and G. Rétvári, “Network Optimization Tech-
niques for Improving Fast IP-level Resilience with Loop-Free Alter-
nates,” Infocommunications Journal, vol. 3, 2011.

[21] L. Csikor, J. Tapolcai, and G. Retvari, “Optimizing IGP link costs for
improving IP-level resilience with Loop-Free Alternates,” Computer
Communications, vol. 36, 2013.

[22] S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So,
RFC7490:Remote Loop-Free Alternate (LFA) Fast Reroute (FRR),
https://tools.ietf.org/html/rfc7490, 2015.

[23] P. Sarkar, S. Hegde, C. Bowers, H. Gredler, and S. Litkowski, Remote-
LFA Node Protection and Manageability, https://tools.ietf.org/html/
rfc8102, 2017.

[24] L. Csikor and G. Retvari, “On Providing Fast Protection with Remote
Loop-Free Alternates: Analyzing and Optimizing Unit Cost Networks,”
in Telecommunication Systems, 2015.

[25] G. Retvari, J. Tapolcai, G. Enyedi, and A. Csaszar, “IP Fast ReRoute:
Loop Free Alternates Revisited,” in IEEE Infocom, Apr. 2011.

[26] W. Tavernier, D. Papadimitriou, D. Colle, M. Pickavet, and P. De-
meester, “Self-configuring Loop-free Alternates with High Link Failure
Coverage,” Telecommunication Systems, vol. 56, 2014.

[27] P. Francois, C. Filsfils, A. Bashandy, B. Decraene, and S. Litkowski,
Topology Independent Fast Reroute using Segment Routing, https : / /
tools.ietf.org/html/draft- ietf- rtgwg-segment- routing- ti- lfa-05, Aug.
2015.

[28] A. Farrel and R. Bonica, “Segment Routing: Cutting Through the Hype
and Finding the IETF’s Innovative Nugget of Gold,” IETF Journal,
vol. 13, 2017.

[29] Y. E. Oktian et al., “Distributed SDN Controller System: A Survey on
Design Choice,” Computer Networks, vol. 121, 2017.

[30] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“OpenFlow: Meeting Carrier-Grade Recovery Requirements,” Com-
puter Communications, vol. 36, 2013.

[31] A. S. da Silva, P. Smith, A. Mauthe, and A. Schaeffer-Filho, “Re-
silience support in software-defined networking: A survey,” Computer
Networks, vol. 92, 2015.

[32] M. Chiesa, A. Kamisiński, J. Rak, G. Rétvári, and S. Schmid, A Survey
of Fast Recovery Mechanisms in the Data Plane, https://www.techrxiv.
org/articles/preprint/Fast Recovery Mechanisms in the Data Plane/
12367508/2, May 2020.

[33] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takàcs, and P.
Sköldström, “Scalable Fault Management for OpenFlow,” in IEEE
International Conference on Communications, 2012.

[34] N. L. van Adrichem, B. J. van Asten, and F. A. Kuipers, “Fast Recovery
in Software-Defined Networks,” in European Workshop on Software
Defined Networks, Sep. 2014.

[35] R. M. Ramos et al., “SlickFlow: Resilient Source Routing in Data
Center Networks Unlocked by OpenFlow,” in IEEE Conference on
Local Computer Networks, Oct. 2013.

[36] C. Cascone, L. Pollini, D. Sanvito, A. Capone, and B. Sansó, “SPIDER:
Fault Resilient SDN Pipeline with Recovery Delay Guarantees,” in
IEEE Conference on Network Softwarization, Jun. 2016.

[37] N. L. M. van Adrichem, F. Iqbal, and F. A. Kuipers, “Backup Rules
in Software-Defined Networks,” in IEEE Conference on Network
Function Virtualization and Software-Defined Networking, Nov. 2016.

[38] S. Cevher, M. Ulutas, S. Altun, and I. Hokelek, “Multi Topology
Routing Based IP Fast Re-Route for Software Defined Networks,” in
IEEE Symposium on Computers and Communications, Jun. 2016.

[39] S. Cevher, “Multi Topology Routing Based Failure Protection for Soft-
ware Defined Networks,” in IEEE International Black Sea Conference
on Communications and Networking, Jun. 2018.

[40] Q. Li, Y. Liu, Z. Zhu, H. Li, and Y. Jiang, “BOND: Flexible failure
recovery in software defined networks,” Computer Networks, vol. 149,
2019.

[41] R. Sedar, M. Borokhovich, M. Chiesa, G. Antichi, and S. Schmid,
“Supporting Emerging Applications With Low-Latency Failover in
P4,” in Workshop on Networking for Emerging Applications and
Technologies, 2018.

[42] H. Giesen, L. Shi, J. Sonchack, A. Chelluri, N. Prabhu, N. Sultana,
L. Kant, A. J. McAuley, A. Poylisher, A. DeHon, and B. T. Loo,
“In-Network Computing to the Rescue of Faulty Links,” in Morning
Workshop on In-Network Computing, 2018.

[43] S. Lindner, D. Merling, M. Häberle, and M. Menth, “P4-Protect: 1+1
Path Protection for P4,” P4 Workshop in Europe (EuroP4), Dec. 2020.

[44] K. Hirata and T. Tachibana, “Implementation of Multiple Routing
Configurations on Software-Defined Networks with P4,” in Asia-Pacific
Signal and Information Processing Association Annual Summit and
Conference, 2019.

[45] K. Subramanian, A. Abhashkumar, L. D’Antoni, and A. Akella, D2R:
Dataplane-Only Policy-Compliant Routing Under Failures, 2019.

[46] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich, A. Kamisiński,
G. Nikolaidis, and S. Schmid, “PURR: A Primitive for Reconfigurable
Fast Reroute,” in ACM Conference on emerging Networking EXperi-
ments and Technologies, 2019.

[47] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, 2011.

[48] S. Halabi, OSPF DESIGN GUIDE, http://rtfm.vtt.net/spf1euro.pdf,
1996.

[49] P. Bosshart et al., “P4: Programming Protocol-Independent Packet
Processors,” ACM CCR, vol. 44, 2014.

[50] p4lang, Behavioral-model, https : / / github . com / p4lang / behavioral -
model, 2019.

[51] Edge-Core Networks, The World’s Fastest & Most Programmable
Networks, https : / / barefootnetworks . com / resources / worlds - fastest -
most-programmable-networks/, 2017.

[52] ——, Wedge100BF-32X/65X Switch, https : / / www. edge - core . com /
upload / images / Wedge100BF - 32X 65X DS R05 20191210 . pdf,

2019.
[53] D. Merling, S. Lindner, and M. Menth, “Hardware-Based Evaluation of

Scalable andResilient Multicast with BIER in P4,” IEEE Transactions
on Network and Service Management, In Revision for TNSM special
issue: Advanced Management of Softwarized Networks.

[54] EXFO, FTB-1v2/FTB-1 Pro Platform, https://www.exfo.com/umbraco/
surface/file/download/?ni=10900&cn=en-US&pi=5404, 2019.

[55] A. Bas, BMv2 Throughput, https://github.com/p4lang/behavioral-
model/issues/537#issuecomment-360537441, Jan. 2018.


