
©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Demo: Execution and Access Control for Restricted
Application Containers on Managed Hosts (xRAC)

Frederik Hauser and Michael Menth
Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany

Email: {frederik.hauser,menth}@uni-tuebingen.de

Abstract—Restricted application containers (RACs) encapsu-
late applications with their dependencies and configuration for
execution on a hypervisor host. xRAC [1] is a novel approach
for execution control and network access control (NAC). That
is, a RAC can be executed only after successful authentication
and authorization (AA) and obtain limited access to network
resources. A RAC has a unique IPv6 address so that its traffic
is identifiable and controllable by network components. For AA,
xRAC adopts and extends components and procedures of 802.1X.
We publish its source code and a testbed setup guide on GitHub
[2]. In this paper, we give a brief overview on the architecture and
functionality of xRAC, describe the prototypical implementation,
a testbed, and four demo scenarios.

Index Terms—Network Access Control, Application Execution
Control, 802.1X, SDN

I. OVERVIEW ON XRAC
In today’s networks, traffic is increasingly encrypted so

that traffic control becomes hard, e.g., for Quality of Service
(QoS) or security purposes, since the content of the traffic is
unclear. xRAC [1] tackles this problem. Applications are run
in restricted application containers (RACs) on managed hosts
and are executed only after successful AA. As each RAC has
its own IPv6 address, the traffic of such applications can be
easily identified and appropriately treated.

With xRAC, users are assigned permissions to run special
RACs on managed hosts. When a user starts a RAC on a
managed host, an AA server is contacted to authenticate the
user and grant authorization to launch the RAC. Only in case
of success, the RAC is executed. Managed hosts may run
multiple RACs in parallel to host-native applications.

For authentication, the managed host sends user authentica-
tion data (UAND) and container authentication data (CAND)
to the AA server. UAND may be a user identity with a pass-
word and CAND may be the integrity checksum of the RAC.
If the user is permitted to run the RAC, the AA server returns
container authorization data (CAZD) to the managed host and
network control elements. The former permits execution of the
RAC, the latter grants access to protected network resources.

For applying this AA procedure with 802.1X on RACs,
we adopt the three 802.1X components with the following
modifications to the original standard. First, we introduce a
softwarized 802.1X container supplicant (802.1X CS) that runs

This work was supported by the bwNET100G+ project which is funded by
the Ministry of Science, Research and the Arts Baden-Württemberg (MWK).
The authors alone are responsible for the content of this paper.

on the managed host with an interface to the container man-
agement daemon (CMD). Second, we introduce a softwarized
802.1X container authenticator (802.1X CA) that is deployed
as network application connecting the 802.1X CS and 802.1X
authentication server (802.1X AS). Third, we substitute EAP-
over-LAN (EAPoL) by EAP-over-UDP (EAPoUDP) for the
communication between the 802.1X CS and 802.1X CA. Last,
we configure the 802.1X AS to support CAND validation and
CAZD. More technical details can be found in the paper [1].

Figure 1 depicts AA of RACs with 802.1X. A user attempts
to start a RAC via the CMD (1). The start request includes
the RAC name and UAND. The CMD calculates the image
checksum as CAND and requests the 802.1X CS for permis-
sion to run the RAC (2). The 802.1X CS initiates and performs
authentication with the 802.1X AS via the 802.1X CA (3). In
case of successful authentication and execution permission,
the 802.1X AS responds with CAZD (4) to the 802.1X CA.
The 802.1X CA forwards CAZD to the 802.1X CS (4a), the
802.1X CS permits the RAC launch permit of the CMD (4b).
In parallel, the 802.1X CA forwards CAZD to network control
elements (4c). Here, it instructs an SDN controller to install
rules so that the RAC can communicate with the protected
server. Now, the RAC but not the managed host or other RACs
can communicate with the protected server (5).

(3)

802.1X AS802.1X 
CA

Protected 
Server

Managed host

CMD

User

RA
C

80
2.

1X
CS

(1)

(2, 4b)

(4a)

(4c)

(4) 

(5) UAND

CANDUAND

CAZD

CAZD

Fig. 1. Components and process of AA in xRAC (similar to [1]).

II. PROTOTYPICAL IMPLEMENTATION

The prototypical implementation of xRAC comprises three
parts. First, the managed host runs RACs with the help
of the CMD and 802.1X CS. We use Docker (19.03.5) as
virtualization platform, enable IPv6 networking, and create a
fixed subnet with globally routeable IPv6 addresses in the
CMD configuration. Each RAC receives a dedicated IPv6

2020 IEEE/IFIP Network Operations and Management Symposium (NOMS), Budapest, Hungary, April 2020



global unicast address, the CMD manages the routing table
of the host system and enables IPv6 forwarding so that other
hosts can reach the RACs. We run the NDP Proxy Daemon
(NDPPD) [3] that responds to neighbor solicitation request
for RAC addresses with the MAC address of the managed
host. We implement the 802.1X CS as plugin for the Docker
Authorization (AuthZ) framework [4]. The AuthZ framework
provides a REST API that allows individual authorization
plugins to approve or deny requests to the CMD. We im-
plement the 802.1X CS as Flask [5] web application and
run it with with the uWSGI [6] application server. Second,
the 802.1X CA is implemented as application for the Ryu
SDN controller framework [7] (v4.34). Therefore, we extend
the 802.1X Authenticator from our previous work [8] by AA
for RACs using EAPoUDP. As example for network access
control (NAC), we extend a L2 switch by access control lists.
Static white-list entries that allow communication with public
hosts are defined by the administrator. Dynamic white-list
entries are added by the 802.1X CA when receiving CAZD
from the 802.1X AS. Last, we use FreeRADIUS (v3.0.16) as
802.1X AS. We extend its data model with vendor-specific at-
tributes (VSAs) for CAND/CAZD and add unlang [9] control
sequences to validate CAND within AA.

III. TESTBED ENVIRONMENT

Figure 2 depicts the testbed environment. We execute Vir-
tual Box virtual machines (VMs), an Open vSwitch (OVS)
instance, the Ryu SDN controller, and a FreeRADIUS in-
stance on a ThinkPad T460s with an i5-6200U CPU, 20
GB RAM, SSD, and running Ubuntu 18.04.3 LTS. The
managed host is deployed as VM running Ubuntu Server
18.04.3 LTS. The managed host VM is configured with
the IPv6 subnet 2001:db8::11:0/116. The docker0
interfaces receives 2001:db8::11:1, xRAC containers
receive IPv6 addresses starting from 2001:db8::11:2.
Both public and protected servers are VMs running Ubuntu
Server 18.04.3 LTS. The public server is configured with
the IPv6 address 2001:db8::aa:0, the protected server
with 201:db8::bb:0. All VMs are interconnected via an
OVS bridge with a tap device. The Ryu SDN controller
with the 802.1X CA application manages the OVS bridge via
OpenFlow. OVS, the Ryu SDN controller, and FreeRADIUS
are directly executed on the local testbed system. A GitHub
repository [2] includes a complete setup guide and the source
code of all software components.

IV. DEMO SCENARIO

We describe the experiments shown in the demonstration.
For visualizing xRAC’s operations, we open four console
windows on the testbed computer that show the CLI of
the managed host, the console output of the 802.1X CS
application, the console output of the 802.1X CA application,
and the console output of the 802.1X AS.

We perform the following four experiments from the man-
aged host that should demonstrate xRAC’s functionality. First,
we show that only the public, but not the private server are

Ubuntu Server VM
2001:db8::11:0

Testbed system

Management components

Ryu SDN 
controller

802.1X CA 802.1X AS

FreeRADIUS

Managed host

802.1X CS

xRAC

Ubuntu Server VM
2001:db8::aa:0

Ubuntu Server VM
2001:db8::bb:0

Open vSwitch
2001:db8::1

localhost:6653

SDN switch

localhost:1812

2001:db8::11:2

Protected 
Server

Public 
Server

Virtual testing network

Fig. 2. Testbed environment with xRAC components.

reachable before AA. We send ICMP echo request packets to
both servers but only receive ICMP echo response packets
from the public server. Second, we show that the latest
Busybox [10] container image as example for a RAC can
successfully access the protected server after AA. We define
UAND (username and password), CAND (checksum of the
Busybox image), and CAZD (IPv6 address of the protected
server) on the 802.1X AS. We start a new Busybox RAC
with the user credentials as UAND. With successful AA,
the 802.1X CA adds a dynamic white-list entry so that the
RAC can communicate with the protected server. RAC start is
granted, and we show successful AA by sending ICMP echo
request packets from the RAC to the protected server that are
answered with ICMP echo response packets. Third, we show
that only the RAC, but not the managed host can access the
protected server after AA. While sending ICMP echo requests
from the RAC, we start to send ICMP echo requests from the
managed host to the protected server. The RAC still receives
ICMP echo response packets, but no answers arrive at the
managed host. Last, we show that only permitted RACs can
be started on the managed host. Instead of Busybox, we try
to start an Alpine Linux [11] container image. As expected,
execution on the managed host is denied by the 802.1X CS.

ACKNOWLEDGMENT

The authors thank Mark Schmidt and Julian Rilli for fruitful
discussions and programming contributions.

REFERENCES

[1] F. Hauser, M. Schmidt, and M. Menth, “xRAC: Execution and Access
Control for Restricted Application Containers on Managed Hosts,” in
IEEE/IFIP Network Operations and Management Symposium 2020.

[2] “xRAC Repository on GitHub,” https://github.com/uni-tue-kn/xrac.
[3] “ndppd,” https://github.com/DanielAdolfsson/ndppd.
[4] “Docker AuthZ,” https://docs.docker.com/engine/extend/plugins authorization/.
[5] “Flask,” https://palletsprojects.com/p/flask/.
[6] “uWSGI,” https://uwsgi-docs.readthedocs.io/en/latest/.
[7] “Ryu SDN Controller Framework,” https://osrg.github.io/ryu/.
[8] F. Hauser, M. Schmidt, and M. Menth, “Establishing a Session Database

for SDN using 802.1X and Multiple Authentication Resources,” in IEEE
International Conference on Communications 2017.

[9] “unlang,” https://freeradius.org/radiusd/man/unlang.html.
[10] “busybox Docker Image,” https://hub.docker.com/ /busybox.
[11] “Alpine Linux Docker Image,” https://hub.docker.com/ /alpine.

All web resources were last accessed on 01-12-2020.


