
P4-Based Implementation of BIER and BIER-FRR for
Scalable and Resilient Multicast

Daniel Merling∗, Steffen Lindner, Michael Menth

University of Tuebingen, Department of Computer Science, Chair of Communication
Networks, Tuebingen, Germany

Abstract

Bit Indexed Explicit Replication (BIER) is a novel IP multicast (IPMC) for-
warding paradigm proposed by the IETF. It offers a transport layer for other
IPMC traffic, keeps core routers unaware of IPMC groups, and utilizes a rout-
ing underlay, e.g., an IP network, for its forwarding decisions. With BIER, core
networks do not require dynamic signaling and support a large number of IPMC
groups with large churn rates. The contribution of this work is threefold. First,
we propose a novel fast reroute (FRR) mechanism for BIER (BIER-FRR) so
that IPMC traffic can be rerouted as soon as the routing underlay is able to
carry traffic again after a failure. In particular, BIER-FRR enables BIER to
profit from FRR mechanisms in the routing underlay. Second, we describe a
prototype for BIER and BIER-FRR within an IP network with IP fast reroute
(IP-FRR). It is based on the programmable data plane technology P4. Third,
we propose a controller hierarchy with local controllers for local tasks, in par-
ticular to enable IP-FRR and BIER-FRR. The prototype demonstrates that
BIER-FRR reduces the protection time for BIER traffic to the protection time
for unicast traffic in the routing underlay.

Keywords: Software-Defined Networking, P4, Bit Index Explicit Replication,
Multicast, Resilience, Scalability

©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jnca.2020.102764
∗Corresponding author
The authors acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG)

under grant ME2727/2. The authors alone are responsible for the content of the paper.
Email addresses: daniel.merling@uni-tuebingen.de (Daniel Merling),

steffen.lindner@uni-tuebingen.de (Steffen Lindner), menth@uni-tuebingen.de (Michael
Menth)

Accepted manuscript, JNCA, published in vol. 169, 1. November 2020 September 8, 2020

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jnca.2020.102764

1. Introduction

IP multicast (IPMC) is leveraged for many services like IPTV, multicast
VPN, or the distribution of financial or broadcast data. It efficiently forwards
one-to-many traffic on tree-like structures to all desired destinations by sending
at most one packet copy per link in the distribution tree. IPMC is organized into
sets of receivers, so-called IPMC groups. Hosts subscribe to IPMC groups to
receive the traffic which is addressed to that group. Traditional IPMC methods
require per-IPMC-group state within core routers to forward the packets to the
right next-hops (NHs). This raises three scalability issues. First, the number
of IPMC groups may be large which require lots of space in forwarding tables.
Second, core routers are involved in the establishment, removal, and in the
change of an IPMC group. This requires significant signaling in the core network
every time subscribers change because many nodes possibly need to update their
forwarding information base, which imposes heavy load on core when churn
rates are large. Third, when the topology changes or in case of a failure, the
forwarding of any IPMC group possibly requires fast update, which is demanding
in a critical network situation. IPMC features are available in most off-the-shelf
hardware, but the features are turned off by administrators due to complexity
and limited scalability.

The Internet Engineering Task Force (IETF) developed Bit Index Explicit
Replication (BIER) [1, 2] as a solution to those problems. BIER features a
domain concept. Only ingress and egress routers of a BIER domain participate
in signalling. They encapsulate IPMC packets with a BIER header containing
a bit string that indicates the receivers of the IPMC group within the BIER
domain. Based on that bit string the packets are forwarded through the BIER
domain without requiring per-IPMC-group state in core routers.

BIER leverages the so-called bit indexed forwarding table (BIFT) for for-
warding decisions. Its entries are derived from paths induced by the interior
gateway protocol (IGP) which is used for unicast routing. In the following
we refer to that routing protocol with the term ’routing underlay’. Therefore,
BIER traffic follows the same paths as the unicast traffic carried by the rout-
ing underlay. So far, BIER lacks any protection capabilities. In case of a link
or node failure, the BIFT entries need to be changed so that BIER traffic is
carried around failed elements towards receivers. However, the BIFTs can be
updated only after the routing underlay has updated its forwarding information
base and based on the new paths, BIER forwarding entries are recomputed.
This takes a significant amount of time. In the meantime, packets are dropped.
When a multicast packet is dropped, all downstream subscribers cannot receive
the packet. Regular IP forwarding is affected as well by failures, but for uni-
cast traffic, fast reroute (FRR) [3] mechanisms have been proposed to reroute
affected packets on backup paths until the primary forwarding entries are up-
dated. IP-FRR leverages pre-computed backup actions for fast recovery in case
of a failure without the need for signaling. However, IP-FRR is not a suitable
protection method for multicast traffic because it does not consider the tree-like
forwarding structures along which IPMC packets are distributed.

2

In this work, we introduce BIER-FRR. It has two different operation modes
to protect either only against link failures or also against node failures. We
recently proposed this mechanism in the BIER working group of the IETF [4].
BIER has been suggested as a novel transport mechanism for IPMC. However,
it cannot be configured yet on standard hardware. New, programmable data
plane technologies allow the definition of new packet headers and forwarding
behavior, and offer themselves for the implementation of prototypes. In [5], we
presented an early version of a P4-based prototype for BIER. It was based on
the P14 specification of P4 [6] and required a few workarounds because at that
time some P4 features were not available on our target, the software switch
BMv2. Moreover, there was no protection method available for BIER. We
now provide the description of a completely reworked prototype on the base of
the P16 specification of P4 [7]. The new prototype implements IP forwarding,
a simple form of IP-FRR, BIER forwarding, and BIER-FRR. It comprises a
controller hierarchy with local controllers that enables FRR techniques with
P4. We argue that local controllers are needed for protection and helpful for
local tasks in general. The evaluation of the prototype shows that BIER traffic
is not longer affected by network failures than unicast traffic when BIER-FRR
is enabled. Thus, the contribution of this paper is threefold: (1) a concept for
BIER-FRR, (2) an implementation of BIER and BIER-FRR with P4, and (3)
a controller hierarchy with local controllers to support FRR techniques in P4.
Finally, the P4-based prototype demonstrates the usefulness of BIER-FRR. The
source code of our prototype with the fully working data and control plane is
publicly available on GitHub.

The remainder of this paper is structured as follows. Section 2 reviews
basics of multicast. Section 3 contains fundamentals about IP-FRR, explains
why it is insufficient to protect multicast traffic, and examines related work.
Section 4 discusses related work for both legacy- and SDN-based multicast.
Section 5 gives a primer on BIER. Section 6 explains the resilience problem of
BIER and introduces BIER-FRR. In Section 7 we summarize necessary basics
of P4 needed for the understanding of the BIER prototype. Section 8 describes
the P4-based prototype implementation of IP, IP-FRR, BIER, and BIER-FRR.
The prototype is used to demonstrate the usefulness of BIER-FRR in Section 9.
Finally, Section 10 summarizes this paper and discusses further research issues.

2. Technological Background for IP Multicast

This section gives a primer on IP multicast (IPMC) for readers that are not
familiar with IPMC. IPMC supports one or more sources to efficiently commu-
nicate with a set of receivers. The set of receivers is called an IPMC group
and is identified by an IP address from the Class D address space (224.0.0.0 –
239.255.255.255). Devices join or leave an IPMC group leveraging the Internet
Group Management Protocol (IGMP) [8].

IPMC packets are delivered over group-specific distribution trees which are
computed and maintained by IPMC-capable routers. In the simplest form,
source-specific multicast trees based on the shortest path principle are computed

3

and installed in the routers. The notation (S,G) identifies such a shortest path
tree for the source S and the group G.

IPMC also supports the use of shared trees that can be used by multiple
senders to send traffic to a multicast group. The shared tree has a single root
node called rendezvous point (RP). The sources send the multicast traffic to
the RP which then distributes the traffic over a shared tree. In the literature,
shared trees are denoted by (∗, G).

Protocol-independent multicast (PIM) leverages unicast routing information
to perform multicast forwarding. PIM cooperates with various unicast routing
protocols such as OSPF or BGP and supports both source-specific and shared
multicast distribution trees.

Pragmatic General Multicast (PGM) [9] reduces packet loss for multicast
traffic. It enables receivers to detect lost or out-of-order packets and supports
retransmission requests similar to TCP.

3. IP Fast Reroute

In this section we give a primer on IP fast reroute (IP-FRR). First, we
explain fundamentals of IP-FRR and describe Loop-Free Alternates. Then, we
discuss related work.

3.1. Fundamentals of IP-FRR

When a link or a node fails, devices may not be able to forward packets
to their NHs. As soon as a failure is detected in an IP network, the changed
topology is signaled through the network, new working paths are calculated,
and the forwarding tables of all devices are consistently updated. This process
is called reconvergence and may take up to several seconds. In the meantime,
packets are dropped in case of wrong or missing forwarding entries. IP-FRR
[3] protects IP unicast traffic against the failure of single links and nodes while
reconvergence is ongoing. It is based on pre-computed backup actions to quickly
reroute affected packets. Figure 1 shows an example for Loop-Free Alternates
(LFAs) [10] which is the most popular IP-FRR mechanism. When a node’s

PLR Destination

LFANo LFA

Default route
Backup route

Figure 1: A PLR reroutes a packet to a backup path when the NH on the primary path is
unreachable.

(primary) NH becomes unreachable, the node detects that failure after some

4

time and reroutes the traffic locally over a backup path. Therefore, the node is
also called point of local repair (PLR). To reroute packets in a timely manner,
nodes store a backup NH in addition to the primary NH for each destination.
When the PLR detects that the primary NH is unrechable, e.g., by loss-of-light
detection, loss-of-carrier detection, a bidirectional forwarding detection1 (BFD)
[11], or any other suitable mechanism, it forwards the packet to its backup NH
instead. That backup NH is called Loop-Free Alternate (LFA) and it has to
be chosen such that rerouted traffic does not loop. However, some destinations
remain unprotected because there is not always an alternative hop that has a
shortest path towards the destination which avoids the failed element. The set
of protected destinations is also called coverage. The limited coverage of LFAs
has been evaluated in various studies [12, 13].

3.2. Related Work

The two surveys [14, 15] give an overview of several IP-FRR mechanisms.
We discuss only some of the papers. Equal-cost multi-path (ECMP) can be used
as a very basic FRR mechanism. When a PLR has at least two paths with equal
cost towards a destination, it quickly deviates traffic to the other path when the
primary NH is unreachable. However, this works only if two equal-cost paths
are available under normal conditions, which is mostly not the case. Not-via
addresses [16, 13] tunnel packets to the downstream next-next-hop (NNH) if
the NH is unreachable. To that end, the NNH is assigned a unique address
and an explicit backup path is constructed which does not include the failed
component. Loop-Free Alternates (LFAs) [10] forward packets to alternative
NHs if the primary NH is unreachable. Those alternative NHs have to be
chosen in a way that they have a working shortest path to the destination that
avoids rerouting loops. As such alternative neighbors do not exist for all PLRs
and destinations, the LFA mechanism cannot protect against all single link and
node failure. Remote LFAs [17] (rLFAs) extend the protection capabilities of
LFAs by sending affected packets through shortest path tunnels to nodes that
still reach the destination on a working shortest path. rLFAs protect against
any single link failure in unit link cost networks. However, they achieve only
partial coverage in case of node failures or non-unit link costs. An analysis can
be found in [12].

4. Related Work

We review work in the context of SDN-based multicast. Most traditional
multicast approaches were implemented with OpenFlow. Some works consid-
ered protection mechanisms. A few studies improve the efficiency of multicast
forwarding with SDN. Only a single work implements BIER without protection
using OpenFlow, but the implementation itself requires dynamic forwarding
state, which runs contrary to the intention of BIER.

1When a BFD is established between two nodes, they periodically exchanges keep-alive
notifications.

5

4.1. Multicast Implementations with OpenFlow

The surveys [18, 19] provide an extensive overview of multicast implemen-
tations for SDN. They discuss the history of traditional multicast and present
multiple aspects for SDN-based multicast, e.g., multicast tree planning and
management, multicast routing and reliability, etc. In the following we briefly
discuss some exemplary works that implement multicast for SDN. More details
can be found in the surveys or the original papers.

Most related works with regard to SDN-based multicast implement explicit
flow-specific multicast trees. Most authors propose to compute traffic-engineered
multicast trees in the controller using advanced algorithms and leverage SDN
as tool to implement the multicast path layout. The following works provide
implementations in OpenFlow to show the feasibility of their approaches. Dy-
namic Software-Defined Multicast (DynSDM) [20, 21] leverages multiple trees to
load-balance multicast traffic and efficiently handle group subscription changes.
Modified Steiner tree problems are considered in [22, 23] to minimize the total
cost of edges and the number of branch nodes, or to additionally minimize the
source-destination delay [24]. In [25], the authors compute and install traffic-
engineered shared multicast trees using OpenFlow. In [26] and [27], traffic-
engineered Steiner trees are computed which minimize the number of edges of
the tree and provide optimized locations for multicast sources in the network.
The Avalanche Routing Algorithm (AvRA) [28] considers topological properties
of data center networks to optimize utilization of network links. Dual-Structure
Multicast (DuSM) [29] improves scalability and link utilization for SDN-based
data center networks by deploying different forwarding approaches for high-
bandwidth and low-bandwidth flows. In [30], Steiner trees are leveraged to
compute a multicast path layout including certain recovery nodes which are used
for reliable multicast transmission such as PGM. In [31], the authors evaluate
different node-redundant multicast tree algorithms in an SDN context. They
evaluate the number of forwarding rules required for each mechanism and study
the effects of node failures. The authors of [32] reduce the number of forward-
ing entries in OpenFlow switches for multicast. They propose to use address
translation from the multicast address to the receiver’s unicast address on the
last branching node of the multicast tree. This allows to omit multicast-specific
forwarding entries in leaf switches.

4.2. Multicast Protection with OpenFlow

Kotani et al. [33] suggest to utilize primary and backup multicast trees for
SDN networks. Multicast packets carry an ID to identify the distribution tree
over which they are forwarded. In case of a failure, the controller chooses an
appropriate backup multicast tree and reconfigures senders accordingly. This
mechanism differs in two ways from BIER-FRR. First, the controller has to be
notified, which is not suitable for fast recovery. Second, it requires significant
signalling effort in response to a failure.

The authors of [34] propose a FRR method for multicast in OpenFlow net-
works. Multicast traffic is forwarded along a default distribution tree. If a

6

downstream neighbor is unreachable, traffic is switched to a backup distribu-
tion tree that contains all downstream nodes of the unreachable default subtree.
The backup distribution tree must not contain the unreachable neighbor as for-
warding node. VLAN tags are used to indicate the trees over which multicast
packets should be sent. This mechanism differs from BIER-FRR in a way that
it requires a significant amount of additional dynamic forwarding state to con-
figure the backup trees.

4.3. Improved Multicast Forwarding for SDN Switches

Some contributions improve the efficiency of devices to enable hardware-
based multicast forwarding. The work in [35] organizes forwarding entries of a
switch based on prime numbers and the Chinese remainder theorem. It reduces
the internal forwarding state and allows for more efficient hardware implemen-
tations. Reed et al. provide stateless multicast switching in SDN-based sys-
tems using Bloom filters in [36] and implement their approach for TCAM-based
switches. The authors compare their approach with existing layer-2 forwarding
and show that their method leads to significantly lower TCAM utilization.

4.4. SDN Support for BIER

The authors of [37, 38] implement two SDN-based multicast approaches us-
ing (1) explicit multicast tree forwarding and (2) BIER forwarding in OpenFlow.
They realize explicit multicast trees with OpenFlow group tables. To support
BIER, they leverage MPLS headers to encode the BIER bit string, which lim-
its the implementation to bit strings with a length of 20 bits, and therefore a
maximum of 20 receivers. Rules with exact matches for bit strings are installed
in the OpenFlow forwarding tables. When a packet with a BIER header ar-
rives at a switch and a rule for its bit string is available, the packet can be
immediately transmitted over the indicated interfaces. Otherwise, a local BIER
agent running on the switch and maintaining the BIFT is queried. The local
BIER agent installs a new flow entry for the specific bit string in the OpenFlow
forwarding table. Thus, this approach requires bit string-specific state instead
of IPMC group specific state. Furthermore, it is not likely to work well with
quickly changing multicast groups as most subscription changes require config-
uration changes in the forwarding table of the switch. BIER with support for
traffic engineering (TE) has been proposed in [39]. It uses the same header
format but features different forwarding semantics and is not compatible with
normal BIER. In [40] we have proposed and evaluated several FRR algorithms
for BIER-TE and implemented them in a P4-based prototype [5].

5. Bit Index Explicit Replication (BIER)

First, we give an overview of BIER [2]. Afterwards, we present the Bit Index
Forwarding Table (BIFT), which is the forwarding table for BIER. Then, we
describe the BIER forwarding procedure.

7

5.1. Overview

We introduce essential nomenclature for BIER, the layered BIER architec-
ture, the BIER header, and the BIER forwarding principle.

5.1.1. BIER Domain

BIER leverages a domain concept to transport IPMC traffic in a scalable
manner, which is illustrated in Figure 2. Bit-Forwarding Routers (BFRs) for-
ward BIER multicast traffic within the BIER domain. Inbound multicast traffic
enters the domain through Bit-Forwarding Ingress Routers (BFIRs) and leaves
it through Bit-Forwarding Egress Routers (BFERs). Border routers usually im-
plement both BFIR and BFER functionality. When a BFIR receives an inbound
IPMC packet, it pushes a BIER header onto the IPMC packet which indicates
all BFERs that should receive a packet copy. BFRs utilize the information
in the BIER header to forward BIER packets to all desired destinations along
the paths induced by the interior gateway protocol (IGP). Thereby, packets
are replicated if needed. Finally, the BFERs remove the BIER header before
forwarding IPMC packets outside the domain.

BIER

Bit-Forwarding Ingress
Router (BFIR)

Bit-Forwarding
Router (BFR)

Bit-Forwarding Egress
Router (BFER)

BIER

BIER

BIER

BIER

BIER

BIER domain

Figure 2: IPMC traffic enters a BIER domain through BFIRs which equip it with a BIER
header. BFRs forwarded the traffic based on the BIER header within the domain on paths
induced by the IGP. BFERs remove the BIER header when the traffic leaves the domain.

5.1.2. A Layered BIER Architecture

The BIER architecture can be subdivided into three layers: the IPMC layer,
the BIER layer, and the routing underlay which is the forwarding mechanism
for unicast traffic. In IP networks, the latter corresponds to the interior gateway
protocol (IGP). Figure 3 shows the relation among the layers.

The IPMC layer requests multicast delivery for IPMC packets to a set of
receivers in a BIER domain that depend on IPMC subscriptions. That is, when
an inbound IMPC packet arrives at a BFIR, the BFIR equips the IPMC packet
with an appropriate BIER header indicating all desired destinations. The BIER
layer forwards these packets through the BIER domain to all receivers indicated

8

IPMC
source

Subscriber

Paths

1,2

Subscriber

1 2

BIER domain

BFIR BFER 1 BFER 2

BFR
IPM

C

layer
BIER

layer

R
outing

underlay

x BIER header with destinations

Figure 3: Layered BIER architecture with IPMC layer, BIER layer, and the routing underlay.

in the BIER header, thereby implementing a stateless point-to-multipoint tun-
nel für IPMC. The BIER layer leverages the forwarding information of the
routing underlay to populate the forwarding tables of the BFRs. As a result,
BIER traffic to a specific BFER follows the same path as unicast traffic towards
that BFER. If two BFR are connected on Layer 2, the BIER traffic is directly
forwarded; otherwise, the BFR neighbor is reachable only over the routing un-
derlay so that the BIER traffic is encapsulated and forwarded over the routing
underlay. When a BIER packet reaches a BFER that should receive a packet
copy, the BFER removes the BIER header and passed the IPMP packet to the
IPMC layer for further forwarding.

5.1.3. BIER Header and Forwarding Principle

The BIER header contains a bit string to identify BFERs. For brevity, we
talk in the following about the BitString of a packet to refer to the bit string
in the BIER header of that packet. The BitString is of a specific lenght. Each
bit in the BitString corresponds to one specific BFER. The bits are assigned
to BFERs starting with the least significant bit. BIER devices must support a
BIER header of 256 bits. As this may not suffice to assign bits to all BFERs in
large networks, the standard [2] defines subdomains to cope with that problem.
This is a technical detail that we do not consider any further and our proposed
solution can be easily adapted to subdomains.

When a BFIR receives an IPMC packet, it pushes a BIER header to the
IPMC packet, determines the set of BFERs that must receive the traffic of the
respective IMPC group, and activates in the BitString the bits corresponding
to these BFERs. Packets are forwarded based on the information in their BIER
header. A BFR sends a packet to any of its interfaces if at least one BFER
indicated in the BIER header is reached in the routing underlay over this specific
interface. To avoid duplicates, only those bits are kept in the BitString whose
BFERs can be reached over the specific interface.

9

Figure 4 illustrates the BIER forwarding principle. It shows a small BIER
domain with four nodes, each of them being BFR, BFIR, and BFER. Hosts are
attached to all BIER nodes and participate in a single multicast group. Host 1
sends an IPMC packet to all other hosts. The figure visualizes how the BitString
changes along the forwarding tree whose paths are inherited from the routing
underlay.

2

3

1

4
Shortest path tree from the
routing underlay of BFR 1

IPMC Host 1

IPMC Host 3

IPMC Host 2

IPMC Host 4

BIER domain

1110
1010

0100 1000

Figure 4: An IPMC packet is forwarded from Host 1 to all other hosts via a BIER domain.
Within the domain, BIER packets are forwarded based on the BitString.

The information of the BIER forwarding tables depends only on the routing
underlay. In Section 5.2 we explain the structure of the table and how its entries
are calculated. In contrast to traditional IPMC forwarding, BIER forwarding
does not require knowledge about IPMC groups. This has several advantages.
BFRs do not neet to keep state per IPMC group. This frees core nodes of a BIER
domain from signalling and state processing per IPMC group when subscriptions
or routes change, e.g., in case of failures. This makes BIER forwarding in core
nodes more robust and scalable than traditional IPMC forwarding. BFIRs still
participate in IPMC signaling to keep track of group changes in order to adapt
the BIER header for each IPMC group. BFERs forward outbound IPMC traffic
in a traditional way.

5.2. Bit Index Forwarding Table

In this section we describe the Bit Index Forwarding Table (BIFT) which is
the forwarding table of BFRs. We explain its structure and the computation of
its entries.

First, we define BFR neighbors (BFR-NBRs) before we introduce the struc-
ture of the BIFT. The BFR-NBRs of a BFR A are those BFRs, that are adjacent
to A according to the paths of the routing underlay.

Each BFR maintains a Bit Index Forwarding Table (BIFT) to determine the
NH, i.e., BFR-NBR, when forwarding a packet. Table 1 shows the structure of
the BIFT. For each BFER, the BIFT contains one entry which consists of a
forwarding bitmask (F-BM) and the BFR-NBR to which the packet should be
sent. The F-BM is used in the forwarding process to clear bits in a packet’s
BitString before transmission. The BFR-NBR for a BFER is derived as the

10

BFER F-BM BFR-NBR

Table 1: Header of the BIFT.

BFR-NBR on the path from the considered BFR to the BFER in the routing
underlay. The F-BM for a BFER is composed as a bit string where all bits are
activated that belong to BFERs with the same BFR-NBR. As a result, all BIFT
entries with the same BFR-NBRs also have the same F-BM.

Table 2 illustrates the BIFT of BFR 1 in the example given in Figure 4.

BFER F-BM BFR-NBR
1 - -
2 1010 2
3 0100 3
4 1010 2

Table 2: BIFT of BFR 1.

5.3. BIER Forwarding

In this paragraph we describe BIER forwarding. First, we explain the pro-
cedure how BIER processes packets. Then, we show a forwarding example.
Finally, we illustrate the BIER header stack.

5.3.1. BIER Forwarding Procedure

BFRs process BIER packets in a loop. When a BFR receives a BIER packet,
it determines the position of the least-significant activated bit in the BitString.
The position of that bit corresponds to a BFER which is processed in this
specific iteration of the loop. The BFR looks up that BFER in the BIFT, which
results in a BFR-NBR and a F-BM. Then, a copy of the BIER packet is created
for transmission to that BFR-NBR. Before transmission, all bits are cleared in
the BitString of the packet copy that are not reachable through the same BFR-
NBR. This is achieved by an AND-operation of the BitString and the F-BM. We
denote this action as “applying the F-BM to the BitString”. Then, the packet
copy is forwarded to the indicated BFR-NBR. All BFERs in the IPMC subtree
of that BFR-NBR eventually receive a copy of this sent packet if their bit is
activated in the BitString of the packet copy. Thus, all BFERs of this IMPC
subtree can be considered as processed. Therefore, their bits are removed from
the BitString of the remaining BIER packet. To that end, the BFR applies
the complement of the F-BM to the BitString of the remaining BIER packet.
This ensures that packets are delivered only once to intended receivers. If the
BitString in the remaining BIER packet still contains activated bits, the loop
restarts; otherwise the processing loop stops.

When the BFER that is currently processed corresponds to the BFR itself,
the F-BM and BFR-NBR of its BIFT entry are empty. Then, a copy of the

11

BIER packet is created, the BIER header is removed, and the packet is passed
to the IPMC layer within the BFR. Afterwards, the processed bit is cleared
in the BitString of the remaining BIER packet, and the loop restarts if the
BitString contains activated bits; otherwise the loop stops.

5.3.2. BIER Forwarding Example

We assume that BFIR 1 in Figure 4 receives an IPMC packet from IPMC
Host 1 that should be sent to the IPMC Hosts 2, 3, and 4. Therefore, it adds
a BIER header with the BitString 1110 to the IPMC packet and processes it.
The least-significant activated bit corresponds to BFR 2. BFR 1 looks up the
activated bit in its BIFT which is shown in Table 2. Then, it creates a packet
copy and applies the F-BM to the BitString of that copy. This sets the BitString
to 1010. Then, the packet copy is forwarded to BFR 2. Aftwards, BFR 1 clears
the activated bits of the F-BM from the BitString of the remaining original
BIER packet. This leaves a packet with the BitString 0100. BFR 1 processes
the next activated bit, i.e. the bit for BFER 3. A packet copy is created, and
the F-BM is applied which leaves the BitString 0100 in the packet copy. Then
it is forwarded to BFR 3.

BFR 2 process the packet in the same way. As a result, it forwards one
packet copy with the BitString 1000 to BFR 4. Additionally, it sends an IPMC
packet without BIER header to its connected host. BFR 3 and 4 do the same
when they receive their respective BIER packet.

5.3.3. BIER Header Stack

Without loss of generality, we assume in the following that the routing un-
derlay is IP. Furthermore, we neglect the role of Layer 2 to facilitate readability.

Each BIER device is also an IP device. However, not every IP device is a
BIER device. In Figure 5, the “Pure IP-node” is an IP node without BIER
functionality. It belongs to the IP topology but not to the BIER topology. This
influences the header stack of forwarded BIER packets. BFR 1, 2 and 3 are

IPBFR 1

BFR 2

BFR 3

BIER domain

BHIP BHIP

BH
BH

IPMC packet BH BIER header IP IP header

IP domain

Pure
IP-node

Figure 5: BIER traffic forwarded over pure IP nodes requires additional IP encapsulation.

12

both IP and BIER devices. The three BFRs are BFR-NBRs to each other.
BFR 1 and 2 are neighbors to each other in both the IP and BIER topology
because they are directly connected on Layer 2. Therefore, they exchange BIER
packets on Layer 2 without an additional header. Since the pure IP node is not
part of the BIER topology, BFR 1 and BFR 3 are BFR-NBRs although they
are not neighbors in the IP topology. To exchange packets, BFR 1 and BFR
3 encapsulate BIER packets with an IP header and forward them via the pure
IP node. When BFR 1 or 3 receive the packet, they remove the IP header and
process the BIER header.

6. BIER Fast Reroute

The necessity for resilience mechanisms in BIER networks has been discussed
in [41] without proposing any mechanism. In this section we introduce BIER
fast reroute (BIER-FRR) to protect BIER traffic against link and node failures
by taking advantage of reconvergence and FRR mechanisms of the routing un-
derlay. We explain why regular BIER cannot protect BIER traffic sufficiently
against failures, and present BIER-FRR for link and node protection, respec-
tively. Finally, we discuss the protection properties of BIER-FRR.

6.1. Link Protection

In this paragraph we introduce BIER-FRR with link protection. First, we
explain why relying on the available features of BIER and a resilient routing
underlay is not sufficient for protection against link failures. Afterwards, we
describe BIER-FRR with link protection and show a forwarding example.

6.1.1. Resilience Problems of BIER for Link Failures

BFR-NBRs may be directly connected over Layer 2 or they may be reachable
only over Layer 3 so that IP encapsulation is needed for them to exchange BIER
traffic (see Section 5.3.3). This has impact on the effect of link failures.

If neighboring BFRs are reachable only over Layer 3, they exchange BIER
traffic IP-encapsulated towards each other. If a link on the path towards the
BFR-NBR fails, the BFR-NBR is not reachable until the routing underlay has
restored reachability. This may be due to IP-FRR, which is fast, or IP routing
reconvergence, which is slow. In any case, the reachability on the BIER layer
is also restored and no further action needs to be taken. Possibly, the path in
the routing underlay changed, which may affect the neighboring relationships
among BFRs, so that BIFTs need to be recomputed. This, however, is not
time-critical.

If BFR-NBRs are directly connected over Layer 2, they exchange packets
without an additional IP header. If the link between them is broken, protection
mechanisms on Layer 3, in particular IP-FRR, cannot help because the BIER
packet is not equipped with an IP header. Therefore, affected BIER traffic
cannot be forwarded until a new BFR-NBR is provided in the BIFT for affected
BFERs. Thus, the BIFT needs to be updated. This process takes time to

13

recompute the entries based on the new paths from the routing underlay and
starts only after reconvergence of the routing underlay has completed. This
is significantly later than FRR mechanisms on the routing underlay restore
connectivity for unicast traffic.

BIER-FRR with link protection effects that a BFR affected by a link failure
can forward BIER traffic again as soon as its connectivity problem is detected
on the BIER layer and the routing underlay is able to forward unicast traffic
again.

6.1.2. BIER-FRR with Link Protection

PLR BFR-NBR

BIERIP

BIER distribution tree
IP tunnel

BIER

BIER

Figure 6: BIER-FRR with link protection is needed for BFR-NBRs which are directly con-
nected on Layer 2: they IP-encapsulate BIER traffic towards a BFR-NBR after it is detected
unreachable.

The concept of BIER-FRR with link protection is illustrated in Figure 6.
BFRs must be able to detect link failures. This may happen, e.g., through loss of
light detection or through bidirectional forwarding detection (BFD) with BFR-
NBRs [42]. If an unreachable BFR-NBR is detected, a BFR IP-encapsulates
BIER traffic towards that BFR-NBR. As a result, the BIER traffic will reach
the affected BFR-NBR again as soon as reachability on the routing underlay is
restored. This can be very fast if the routing underlay leverages FRR. When
the traffic arrives at the BFR-NBR, the additional IP header is removed and
packets are processed as normal BIER traffic.

6.1.3. Example for BIER-FRR with Link Protection

Figure 7 shows the BIER topology from the earlier forwarding example in
Figure 4 with a link failure. For convenience, the BIFT of BFR 1 is displayed
again in Table 3.

When BFR 1 sends a BIER packet to all other BFERs, the BitString is 1110.
First a packet copy is successfully deliverd to BFER 2 and BFER 4 so that the
BitString of the remaining packet is 0100, i.e., next a packet must be forwarded
to BFER 3. However, BFR-NBR 3 is unreachable for BFR 1 due to the link
failure. Therefore, BFR 1 IP-encapsulates the BIER packets towards BFR 3. As
soon as the routing underlay restores connectivity, the IP-encapsulated BIER
packets is detoured via BFR 2 and BFR 4 towards BFR 3. Thus, BIER-FRR
with link protection may send a second packet copy over a link.

14

1110

1010 2

3 4
Failure free BIER forwarding
Tunneled BIER packet
on backup path

1
1000

0100

0100

0100
BFER F-BM BFR-NBR

1 - -
2 1010 2
3 0100 3
4 1010 2

Figure 7: Packet paths and example topology
for BIER-FRR with link protection.

Table 3: BIFT of BFR 1.

6.2. Node Protection

We introduce BIER-FRR with node protection. First, we discuss why reg-
ular BIER cannot protect BIER traffic sufficiently fast against node failures.
Afterwards, we present the concept of BIER-FRR with node protection, extend
the BIFT with backup entries, show a forwarding example, and explain how
backup entries are computed.

6.2.1. Resilience Problems of BIER for Node Failures

If a BFR fails, all downstream BFRs are unreachable. This problem cannot
be quickly repaired by the routing underlay because traffic directed to the failed
node cannot be delivered. Thus, alternate BFR-NBRs are needed. These are
provided when the routing underlay has reconverged and the BIFT entries are
recomputed. This, however, may take long time.

BIER-FRR with node protection shortens this time so that affected BIER
traffic can be delivered in the presence of node failures as soon as connectivity
for unicast traffic is restored in the routing underlay.

6.2.2. BIER-FRR with Node Protection

We propose BIER-FRR with node protection to deliver BIER traffic even if
the BFR-NBR fails. The concept is shown in Figure 8. When a PLR cannot
reach a BFR-NBR, it tunnels copies of the BIER packet to all BFR next-next-
hops (BFR-NNH) in the distribution tree that should receive or forward a copy.
Thus, for each such BFR-NNH, an individual packet copy is created. The packet
is then tunneled to the BFR-NNH with an additional header of the routing
underlay; these packets are delivered as soon as the routing underlay restores
connectivity. When the BFR-NNH receives such a packet, it removes the tunnel
header and processes the resulting BIER packet.

If a BFR-NBR is unreachable, the link towards the BFR-NBR or the BFR-
NBR itself may have failed. Therefore, the BFR-NBR should also receive a
packet copy encapsulated by the routing underlay.

15

BFR-NBR

BIERIP

BIER distribution tree
IP tunnel

PLR

BIERIP

BFR-NNH

BFR-NNH

Figure 8: Concept of BIER-FRR with node protection.

BFER F-BM BFR-NBR
1 primary F-BM primary NH

backup F-BM backup NH
...

Table 4: Structure of a BIFT with backup entries.

When a packet copy is sent to multiple BFR-NNHs instead of the BFR-NBR,
the the BitString of the forwarded packet copies must be modified appropriately
to avoid duplicate packets at BFERs. These modifications can be obtained with
backup F-BMs, which is explained in more detail in Section 6.2.5.

6.2.3. BIFT with Backup Entries

To support BIER-FRR with node protection, the BIFT must be extended
with backup entries. The structure of a BIFT with backup entries is shown in
Table 4.

The normal BIFT entries are called primary entries. The backup entries have
the same structure as the primary entries. When a BFR-NBR is reachable, the
primary entries are used for forwarding. If a BFR-NBR becomes unreachable,
the corresponding backup entry is used for forwarding in the same way as a
primary entry with only one difference. The packet is not forwarded natively
but instead it is always tunneled to the backup NH through the routing underlay.

6.2.4. Example for BIER-FRR with Node Protection

Figure 9 shows an example topology and Figure 10 illustrates the distribution
tree for BFR 1 and BFR 2 based on the paths from the routing underlay. Table 5
shows the BIFT of BFR 1 with primary and backup entries.

We illustrate the forwarding with BIER-FRR when BFR 2 fails. We assume
that BFR 1 needs to send a BIER packet to BFR 6, i.e. the packet contains
the BitString 100000. As BFR 2 is unreachable, the primary NH of BFR 1
to BFR 6, which is BFR 2, cannot be used. Therefore, the backup entry is
utilized. That means, the backup F-BM 101000 (see Table 5) is applied to the
copy of the BIER packet and then it is tunneled through the routing underlay
to the backup NH BFR 4. BFR 1 applies the complement of the backup F-BM

16

3

1

4

2

6

5
100000

100000

Tunneled BIER packet
on backup path

Failure free BIER forwarding

100000

100000

6

4

2

5

1

3

2

4

3 6

5 1

Figure 9: A packet is sent from BFR 1
to BFR 6 over a backup path using node
protection.

Figure 10: Shortest-path tree of BFR 1 and
BFR 2.

BFER F-BM BFR-NBR
1 000001 -

- -
2 111010 2

000010 2
3 000100 3

000100 3
4 111010 2

101000 4
5 111010 2

010000 5
6 111010 2

101000 4

Table 5: BIFT of BFR 1 with primary and backup entries.

010111 to the BitString of the original BIER packet which is then 000000. As
the BitString of the remaining BIER packet has no activated bits anymore, the
forwarding process terminates at BFR 1.

The routing underlay delivers the packet copy from BFR 1 to BFR 4 as soon
as connectivity is restored. BFR 4 removes the tunnel header and forwards the
BIER packet to BFR 6.

If the BitString of the packet was 100100, i.e., BFER 3 should have received
a copy of the packet, too, a regular BIER packet would have been forwarded
directly to BFR 3 before BIER-FRR tunnels another copy of the BIER packet
to BFR 4. Thus, BIER-FRR with node protection may increase the traffic on
a link to ensure that all relevant NNHs receive a packet copy.

6.2.5. Computation of Backup Entries

We compute backup NHs and backup F-BMs for BFERs at a specific BFR
which we call PLR in this context. To that end, we distinguish two cases: the

17

BFER is not a BFR-NBR (1) or it is a BFR-NBR (2).
In the first case, the BFER is reached from the PLR through the routing

underlay via a considered NH and next-next-hop (NNH). The considered NNH
becomes the backup NH for the BFER. The corresponding backup F-BM re-
quires activated bits for a set of BFERs. This set comprises all BFERs whose
paths in the routing underlay from the PLR also traverses the considered NH
and NNH. This F-BM can be computed by bitwise AND’ing the PLR’s F-BM
for the considered BFER and the considered NH’s F-BM.

In the second case, the considered BFER is a BFR-NBR. Then, the NH is
also taken as backup NH. This ensures that the NH receives a copy of the BIER
packet if the NH cannot be reached due to a link failure. To avoid that the NH
distributes further packet copies, the backup F-BM contains only the activated
bit for the considered BFER.

We illustrate both computation rules by an example. We consider the BIFT
of BFR 1 in Table 5. The backup entry of BFER 6 is an example for the first
computation rule. The backup NH for BFR 6 is BFR 4 as it is the NNH of BFR
1 on the path towards BFR 6 in Figure 10. The BFERs reachable from the
PLR through BFR 4 are BFER 4 and BFER 6. Therefore, the backup F-BM is
101000. It can be obtained by bitwise AND’ing the F-BM of BFR 1 for BFER
6 (111010) and the F-BM of BFR 2 for BFER 6 (101100). The latter can be
derived from the multicast subtree of BFR 2 in Figure 10.

The backup entry of BFER 2 is an example for the second computation rule.
The backup NH for BFER 2 is BFR 2 and the F-BM contains only one activated
bit for BFER 2 (000010).

6.3. Properties of BIER-FRR

We have argued that restoration of BIER connectivity may take long time in
case of a link failure since this process can start only after the reconvergence of
the routing underlay has completed. To shorten the outage time, we introduced
BIER-FRR which restores connectivity on the BIER layer as soon as unreach-
able BFR-NBRs are detected and the connectivity in the routing underlay is
restored.

The general concept of BIER-FRR is simple: it requires some sort of de-
tection that a BFR-NBR is no longer reachable, but it does not require any
additional signalling as it is a local mechanism. Furthermore, it leverages the
restoration of routing underlay so that BIER traffic can profit from FRR mech-
anisms in the routing underlay. It does not define alternate paths on the BIER
layer, which is in contrast to another solution reported in [43].

BIER-FRR comes in two variants: link protection and node protection. Link
protection is simple, it just encapsulates BIER traffic into a header of the routing
underlay, but it cannot protect against node failures. The encapsulated packet
may be sent over an interface over which also a regular copy of the same BIER-
packet is transmitted. That means, up to two packet copies can be transmitted
over at most one link in case of a failure, which runs in contrast to the actual
idea of multicast.

18

Node protection is more complex. It requires a PLR to send backup copies of
a BIER packet to all relevant NNHs encapsulated with a header of the routing
underlay. This requires extensions to the BIFT for backup entries. However,
it protects against link and node failures. The encapsulated packets may be
sent over interfaces over which also a regular copy of the same BIER packet is
transmitted. That means that even multiple packet copies can be transmitted
over several links in case of a failure.

BIER-FRR is designed for single link and node failures. In case of multiple
failures, BIER-FRR suffers from potential shortcomings of the routing underlay
to cope with multiple failures, too, so that some traffic may be lost until the
BIFT is updated. Furthermore, if both a NH and a NNH fail, the subtree of the
NNH is no longer reachable until the BIFTs are updated. Some FRR techniques
may cause routing loops in case of multiple failures [12]. In contrast, BIER-FRR
cannot cause routing loops because it just leverages the routing underlay and
does not propose new paths in failure cases.

6.4. Application of IP-FRR Mechanism on BIER Layer

In Section 3.1 we introduced IP-FRR and described LFAs. In [43] we dis-
cussed the application of LFAs on the BIER layer, i.e., in addition to the pri-
mary BFR-NBR, the BIFT contains a backup BFR-NBRs respectively, to which
a BIER packet is forwarded when the primary NH is unreachable. We identified
two major disadvantages. First, their application leaves a significant amount of
BFERs unprotected against link or node failures because LFAs cannot guaran-
tee full protection coverage [12]. This holds in particular when node protection
is desired for which protection coverage is even lower than for link protection.
Second, LFAs on the BIER layer introduce new paths in the BIER topology,
which can cause rerouting loops for BIER traffic. Third, this approach assumes
IP with IP-FRR as routing underlay while our approach works with any rout-
ing underlay and FRR mechanism. Therefore, we argue that the application of
IP-FRR mechanisms on BIER layer is not sufficient for appropriate protection.

7. Introduction to P4

This section serves as a primer for readers who are not familiar with P4.
First, we explain the general P4 processing pipeline. Then, we describe the
concept of match+action tables, control blocks, and metadata. Finally, we
explain the recirculate and clone operations.

7.1. P4 Pipeline

P4 is a high-level language for programming protocol-independent packet
processors [44]. Its objective is a flexible description of data planes. It introduces
the forwarding pipeline shown in Figure 11. A programmable parser reads
packets and stores their header information in header fields which are carried
together with the packet through the pipeline. The overall processing model is
composed of two stages: the ingress and the egress pipeline with a packet buffer

19

Ingress pipeline

Match
actionPa

rs
er

D
ep

ar
se

r

In
pu

t

O
ut

pu
t

Bu
ffe

r

Egress pipeline

Match
action

Recirculation

Figure 11: P4 abstract forwarding pipeline according to [44].

in between. The egress port of a packet has to be specified in the ingress pipeline.
If no egress port has been specified for a packet at the end of the egress pipeline,
the packet is dropped. At the end of the egress pipeline, a deparser constructs
the packet with new headers according to the possibly modified header fields.
P4 supports the definition and processing of arbitrary headers. Therefore, it is
not bound to existing protocols.

7.2. Metadata

Metadata constitute packet-related information. There are standard and
user-defined metadata. Examples for standard metadata are ingress port or
reception time which are set by the device. User-defined metadata store arbi-
trary data, e.g., processing flags or calculated values. Each packet carries its
own instances of standard and user-define metadata through the P4 processing
pipeline.

7.3. Match+Action Tables

Match+action tables are used within the ingress and egress pipeline to apply
actions to specified packets. The P4 program describes the structure of each
match+action table. The rules are the contents of the table and are added to
the table during runtime.

As match+action tables are essential for the description of our prototype,
we introduce a compact notation for them by an example. The example is
given in Figure 12. The table has the name “MAT Simple IP” and describes an
implementation of simplified IP forwarding with match+action tables. In the
following we use the prefix “MAT ” for naming MATs.

7.3.1. Match Part

A table defines a list of match keys that describe which header fields or meta-
data are used for matching a packet against the table. The match type indicates
the matching method. P4 supports several match types: exact, longest-prefix
(lpm), and ternary. The latter features a wildcard match. In our example in
Figure 12, the match key is the destination IP address and lpm matching is
applied.

20

Packet p MAT_Simple_IP

Match keys: p.DstIP (lpm)

Action Parameter

forward_IP - 2

- meta.egress_port
= egress_port

next step

Match fields

192.168.0.1/32

forward_IP - 3192.168.0.2/32

 forward_IP - egress_port

Action Parameters
Table definition

Table entries

miss
next step

Figure 12: Match+action table for simplified IP forwarding.

7.3.2. Actions

The table further defines a list of actions including their signature which can
be used by rules in case of a match. Actions are similar to functions in common
programming languages and consist of several primitive operations. Inside an
action further actions can be executed. Actions can modify header fields and
metadata of a packet. In our example, this is the forward IP action that requires
the appropriate egress port as a parameter. Each action is illustrated by a flow
chart on the right side of the table.

7.3.3. Rules

During runtime, the match+action tables can be filled with rules through
an application programming interface (API). The rules contain match fields
which are patterns that are to be matched against a packet’s context selected
by the match keys. In our example, the match fields are IP addresses. The rules
further specify an action in the table definition and suitable parameters which
are applied to the packet in case of a match.

In our example in Figure 12 we install two rules. In the first one, the match
field is the IP address 192.168.0.1 and it applies the action forward IP with
the parameter 2. This will send packets with the destination IP 192.168.0.1
over port 2. The match field for the second rule is 192.168.0.2 and it sends the
packet over port 3. For all other destination IPs a miss occurs and no egress
port is specified.

When describing match+action tables of our implementation in Section 8,
we omit the actual rules as they are configuration data and not part of the P4
implementation.

7.4. Control Blocks

A control block consists of a sequence of match+action tables, operations
and if-statements. They encapsulate functionality. Within control blocks other
control blocks can be called. Both the ingress and egress pipeline are control

21

blocks that apply other control blocks. We use the prefix “CB ” for naming of
our other control blocks. Examples of control blocks in our implementation are
CB IPv4, CB BIER, or CB Ethernet.

7.5. Recirculation
P4 does not support native loops. However, as indicated in Figure 11, the

recirculation operation returns a packet to the beginning of the ingress pipeline.
It activates a standard metadata field, i.e., a flag, which marks the packet for
recirculation. The packet still traverses the entire pipeline and only at the end
of the egress pipeline the packet is returned to the start of the ingress pipeline.
When setting the recirculate flag, it is possible to specify which metadata fields
should be kept during recirculation. All others are reset to their default values.
In contrast, header fields modified during the processing remain modfied after
recirculation. Another standard metadata field stores whether a packet has been
recirculated.

7.6. Packet Cloning
P4 supports the packet cloning operation clone-ingress-to-egress (CI2E).

CI2E can be called anywhere in the ingress pipeline. This activates the CI2E
metadata flag which indicates that the packet should be cloned. However, the
copy is created only at the end of the ingress pipeline. In the packet clone all
header changes are discarded that have been made within the ingress pipeline.
If CI2E has been called within the ingress pipeline, two packets enter the egress
pipeline. One is the original packet that has been processed by the ingress
control flow. The second packet is the copy without modifications from the
ingress pipeline. Figure 13 illustrates this by an example.

Ingress start Ingress end

Dst. IP: 192.0.0.1
change Dst.

IP to
 192.0.0.2

CI2E
Dst. IP: 192.0.0.3

Dst. IP: 192.0.0.1 to egress

to egress
change Dst.

IP to
192.0.0.3

Parsed packet Original packet

Cloned packet

Figure 13: Illustration of the clone-ingress-to-egress (CI2E) operation: the destination IP of
the clone is the one of the received packet although IP was modified before CI2E was called.

When the CI2E flag is set, it is possible to specify for the clone whether
metadata fields should persist or be reset. When a packet clone enters the
egress pipeline, an additional standard metadata flag identifies the packet as a
clone. This allows different processing for original and cloned packets.

8. P4-Based Implementation of BIER and BIER-FRR

In this section, we describe the P4-based implementation of IP, IP-FRR,
BIER, and BIER-FRR. We first describe the data plane followed by the control
plane. In the end, we briefly explain our codebase.

22

8.1. Data Plane

First, we specify the handling of packet headers, then, we give a high-level
overview of the processing pipeline, followed by a detailed explanation of applied
control blocks.

8.1.1. Packet Header Processing

P4 requires that potential headers of a packet are defined a priori. Our
implementation supports the header suite Ethernet/outer-IP/BIER/inner-IP.
We use the inner IP header for regular forwarding and the outer IP header
for FRR. During packet processing, headers may be activated or deactivated.
Deactivated headers are not added by the deparser. Encaps actions in our
implementation activate a specific header and set header fields. Decaps actions
deactivate specific headers.

8.1.2. Overview of Ingress and Egress Control Flow

Figure 14 shows an overview of the entire data plane implementation which
is able to perform IP and BIER forwarding as well as IP-FRR and BIER-FRR. It

Ingress pipeline

CB_Port_
Status

CB_IPv4

CB_BIER
(ingress)

Updates port
information

Applies BIFT

Applies BIER encapsulation
and IPv4 forwarding

Egress pipeline

CB_BIER
(egress) CB_Ethernet

BIER
recirculation

Updates MAC
addresses

Recirculation

Figure 14: Overview of ingress and egress control flow.

is divided into ingress and egress control flow which are given as control blocks.
In the ingress and egress control block the CB IPv4 and CB BIER control block
are only applied to their respective packets, i.e., the CB IPv4 control block is
applied to IP packets and the CB BIER control block is applied to BIER packets.
We first summarize their operations and describe their implementation in detail
in the following Sections.

When a packet enters the ingress pipeline, it is processed by the CB Port Status
control block. It updates the port status (up/down) and records it in the user-
defined metadata meta.live ports of the packet. This possibly triggers FRR
actions later in the pipeline. Then, the CB IPv4 control block or the CB BIER
control block is executed depending on the packet type.

The CB IPv4 control block is applied to both unicast and multicast IP
packets. Unicast packets are processed by setting an appropriate egress port,

23

possibly using IP-FRR in case of a failure. IPMC packets entering the BIER
domain are equipped with a BIER header and recirculated for BIER forwarding.
IPMC packets leaving the BIER domain are forwarded using native multicast.

The CB BIER control block is applied to BIER packets. There is a CB BIER
control block for the ingress control flow and another for the egress control flow.
A processing loop for BIER packets is implemented which extends over both
CB BIER control blocks. At the beginning of the processing loop in the ingress
flow the BitString is copied to metadata meta.remaining bits. This metadata
is used to track for which BFERs a copy of the BIER packet still needs to
be sent. Then, rules from the MAT BIFT are applied to the packet. This
also comprises BIER-FRR actions which encapsulate BIER packets with an IP
header if necessary. Within these procedures, the BIER packet is cloned so that
the original packet and a clone enter the egress control flow. The processing
loop stops if the meta.remaining bits are all zero.

In the CB BIER control block of the egress control flow, the recirculate flag
is set for cloned packets. At the end of the egress control flow, the clone is
recirculated to the ingress control flow with modified meta.remaining bits to
continue the processing loop. The non-cloned BIER packet is just passed to the
CB Ethernet control block.

The CB Ethernet control block updates the Ethernet header of each packet.
Then, the packet is sent if an egress port is set and the recirculate flag has
not been activated. If the recirculate flag is activated, the packet is recirculated
instead. This applies to cloned BIER packets in the processing loop or to packets
that require a second pass through the pipeline: BIER-encapsulated IPMC
packets, BIER-decapsulated IPMC packets, IP-encapsulated BIER packets, or
IP-decapsulated BIER packets. If neither recirculate flag is activated and nor
the egress port is set, the packet is dropped.

8.1.3. CB Port Status Control Block

The control block CB Port Status records whether a port is up or down in
the user-defined metadata meta.live ports of a packet. Figure 15 shows that it
consists of only the match+action table MAT Port Status.

The table does not define any match keys. As a result, the first entry matches
every packet. We install only a single rule which calls the action set port status.
It copies the parameter live ports to the user-defined metadata meta.live ports.
Meta.live ports is a bit string where each bit corresponds to a port of the switch.
If the port is currently up, the bit is activated, otherwise, the bit is deacti-
vated. The metadata field meta.live ports is later used by both the CB IPv4
and CB BIER control block to decide whether IP-FRR and BIER-FRR should
be applied. The parameter live ports in the table is updated by the local con-
troller when the port status changes, which will be explained in Section 8.2.1.

8.1.4. CB IPv4 Control Block

The CB IPv4 control block handles IPv4 packets. Its operation is shown in
Figure 16.

24

Packet p MAT_Port_Status

Match keys: -

Action Parameters

 set_port_status - live_ports

- meta.live_ports
 = live_ports

to either CB_IP or
CB_BIER

Figure 15: In the control block CB Port Status the table MAT Port Status copies the infor-
mation about live ports to the user-defined metadata field meta.live ports of the packet.

Packet p
MAT_IP_unicast

Action Parameters

 forward_IP - egress_port

 decaps_IP -

no

yes

miss

MAT_IPMC_native

Match keys: p.DstIP (exact)

Action Parameters

 forward_IPMC - IPMC_group

- meta.egress_port
 = egress_port

- remove IP
 header of p
- set
 meta.recirculate

- meta.mcast_group =
 IPMC_group

meta.BIER
_decaps set?

miss

to egress

to egress

miss

MAT_IPMC_BIER

Match keys: p.DstIP (exact)

Action Parameters

 encaps_BIER - BIER_bitstring

- push BIER header with
 BIER_bitstring to p
- set meta.recirculate

Match keys: p.DstIP (lpm) &
meta.live_ports (ternary)

Figure 16: The CB IPv4 control block handles IPv4 packets.

It leverages three match+action tables: MAT IP unicast, MAT IPMC native,
and MAT IPMC BIER. Packets are processed by these tables depending on
their type. MAT IP unicast performs IP unicast forwarding including IP-FRR.
IPMC packets encounter a miss and are relayed by the control flow to MAT IPMC native
or MAT IPMC BIER. MAT IPMC native performs native multicast forwarding
for IPMC packets leaving the BIER domain while MAT IPMC BIER just adds
a BIER header for IPMC packets entering the BIER domain.

MAT IP unicast. This match+action table uses the IP destination address and
the metadata meta.live ports as match keys. The IP destination address is
associated with a longest prefix match and the meta.live ports with a ternary
match. We first explain our implementation of IP-FRR. The rules contain an
IP prefix and a required port pattern as match fields (not shown in the table).
Required port corresponds to a bit string of all egress ports and is a wildcard
expression with only a single zero or one for the primary egress port of the traffic,
i.e., *...*0*...* or *...*1*...*. If FRR is desired for an IP prefix, two rules
are provided: a primary rule with *...*1*...* as required port pattern, and a
backup rule with *...*0*...*.

The table offers two actions: forward IP and decaps IP. We explain both in
the following in detail.

The decaps IP action is applied to packets that are addressed to the node

25

itself. For such rules the required port pattern is set to *...*. Those IP packets
are typically BIER packets that have been encapsulated in IP by other nodes
for BIER-FRR. Therefore, the IP header is removed and the recirculate flag is
set so that the packet can be forwarded as BIER packet in a second pass of the
pipeline. In theory, other IP packets with the destination IP addresses of the
node itself may have reached their final destination. They need to be handed
over to a higher layer within the node. However, this feature is not required in
our prototype so that we omit it in our implementation.

The forward IP action is applied for other unicast address prefixes and re-
quires an egress port as parameter. It sets the meta.egress port to the indicated
egress port so that the packet is switch-internally relayed to the right egress
port. The IP-FRR mechanism as explained above may be used in conjunction
with forward IP to provide an alternate egress port when the primary egress
port is down. This mechanism allows implementation of LFAs.

IPMC addresses encounter a miss in this table so that their packets are
further treated by the control flow in the CB IPv4 control block. It checks
whether the meta.BIER decaps bit has been set. If so, the IPMC packet came
from the BIER domain and has been decapsulated. Therefore, it is relayed to
the MAT IPMC native table for outbound IPMC traffic. Otherwise, the IMPC
packet has been received from a host and requires forwarding through the BIER
domain. Therefore, it is relayed to the MAT IPMC BIER table.

MAT IPMC native. This match+action table implements native IPMC for-
warding. It is used by a BFER to send IPMC packets to hosts outside the
BIER domain that have subscribed to a specific IPMC group. The table
MAT IPMC native uses the IP destination address as match key with an ex-
act match. It defines only the forward IPMC action and requires a switch-
internal multicast group as parameter, which is specific to the IPMC group
(IP destination address) of the packet. The action sets this parameter in the
meta.mcast group of the packet. As a consequence, the packet is processed by
the native multicast feature of the switch. This results in packet copies for every
egress port contained in the switch-internal multicast group meta.mcast group
with the corresponding egress port set in the metadata of the packets. The set
of egress ports belonging to that group can be defined through a target-specific
interface, which is done by the controller in response to received IGMP packets.
Packets encountering a miss in this table are dropped at the end of the pipeline.

MAT IPMC BIER. This match+action table uses the IP destination address
as match key with an exact match. It defines only the encaps BIER action and
requires the bit string as parameter, which is specific to the IPMC group (IP
destination address) of the packet. The action pushes a BIER header onto the
packet and sets the specified BitString. Then the recirculate flag is set so that
the packet can be forwarded as a BIER packet in a second pass of the pipeline.
Packets encountering a miss in this table are dropped at the end of the pipeline.

26

8.1.5. CB BIER Control Block

The CB BIER control block processes BIER packets. It is illustrated in
Figure 17.

MAT_BIFT
Match keys:

meta.remaining_bits (ternary)
& meta.live_ports (ternary)

Action Parameters

 forward_BIER - primary_fbm
- primary_NH

 decaps_BIER - decap_bit

 encaps_IP - backup_fbm
- backup_NH

Packet p

- apply primary_fbm to p.bitstring
- remove primary_fbm
 from meta.remaining_bits
- set meta.egress_port to primary_NH
- set CI2E flag

to egress

- remove BIER header from p
- remove decap_bit from
 meta.remaining_bits
- set meta.BIER_decaps
- set recirculateflag
- set CI2E flag

- apply backup_fbm to p.bitstring
- remove backup_fbm from
 meta.remaining_bits
- push IP header to p with
 backup_NH as destination
- set recirculate flag
- set CI2E flag

miss

Is p a clone?
no

yes

to CB_Ethernet
Packet p

BIER (ingress) BIER (egress)

 if
(!meta.rem_
bits_valid)

yes

no

- meta.remaining_bits = p.bitstring
- meta.rem_bits_valid = true

- set recirculate flag

Figure 17: The CB BIER control blocks in the ingress and egress pipeline implement BIER
fowarding as a processing loop.

The user-defined metadata meta.remaining bits is used during BIER pro-
cessing to account for the BFERs that still need a copy of the packet. It serves
as a control variable for the processing loop. When a BIER packet is pro-
cessed by the CB BIER control block for the first time, meta.remaining bits
is initialized with the BitString of the packet. The user-defined metadata
meta.remaining bits valid is initially zero. It is activated after meta.remaining bits
is initialized and prevents overwriting
meta.remaining bits when the packet is recirculated.

Then the match+action table MAT BIFT is applied. It implements BIER
forwarding including BIER-FRR according to the principle we developed for
IP-FRR in Section 8.1.4. Match keys are the packet’s meta.remaining bits in-
dicating BFERs, and meta.live ports indicating live egress ports. The match
types are ternary. Rules are provided for all individual BFERs both for failure-
free cases and failure cases. The match field of these rules consists of two bit
strings that we call dest BFER and required port (not shown in the table). The
dest BFER bit string has the bit position for the respective BFER activated
and all other bit positions set to wildcards (*...*1*...*). The required port
bit string is used as in Section 8.1.4 to select between primary and backup rules.
In case of a match, there are three possible actions.

Decaps BIER is called by the rule whose activated bit in dest BFER refers
to the node itself. It has a F-BM with only the bit of the BFER activated and
no primary or backup NH. If this rule matches, the node should receive a copy
of the packet. The action removes the BIER header of the packet, activates
the user-defined metadata flag meta.BIER decaps, and the recirculate flag so
that the resulting IPMC packet is processed in a second pass of the pipeline.
In addition, the complement of F-BM is used to clear the bit for the processing
node itself in meta.remaining bits.

Forward BIER is called by rules whose activated bit in dest BFER refers to

27

other nodes and where the required port bit string indicates that the egress port
works. Thus, forward BIER is used for primary forwarding. It has the primary
F-BM and the primary NH (egress port) as parameters. The primary F-BM is
applied to clear bits from the BitString of the packet and the complement of the
backup F-BM is applied to meta.remaining bits. In addition, meta.egress port
is set to the primary NH.

Encaps IP is called by rules where the required port bit string indicates that
the primary egress port does not work for the BFER specified in dest BFER.
Thus, encaps IP is used for backup forwarding. It has the backup F-BM and
the backup NH (IP address) as parameters. The backup F-BM is applied to
clear bits from the BitString of the packet and the complement of the backup
F-BM is applied to meta.remaining bits. Then, an IP header is pushed with
the destination address of the backup NH. The recirculate flag for the packet is
activated as it requires IP forwarding in a second run through the pipeline.

At the end of decaps BIER, forward BIER, and encaps IP, a flag for CI2E
is set. This effects that a packet copy is generated at the end of the ingress
pipeline. For the copy (clone), the recirculate flag is activated in the CB BIER
control block in the egress control flow. With this packet, the BIER processing
loop continues. The meta.remaining bits information must be kept to account
for the BFERs that still need a packet copy.

When packets enter the MAT BIFT table with meta.remaining bits equal
to zero, they encounter a miss. As a result, they are dropped at the end of the
pipeline, which stops the processing loop for these BIER packets.

8.1.6. CB Ethernet Control Block

The CB Ethernet control block is visualized in Figure 18.

Packet p MAT_Ethernet
Match keys:

meta.egress_port (exact)

Action Parameters

 encaps_eth - src_MAC
- dst_MAC

- set p.src_MAC = srcMAC
- set p.dst_MAC = dstMAC

send or recirculate p

Figure 18: CB Ethernet control block.

It applies the match+action table MAT Ethernet to all packets. The match
key is the egress port of the packet and the match type is exact. Only the action
encaps eth is defined which requires the parameters src MAC and dst MAC. It
updates the Ethernet header of the packet by setting the source and destination
MAC address which are provided as parameters. Rules are added for every
egress port.

28

This behavior is sufficient as we assume that any hop is an IP node. Although
MAC addresses are not utilized for packet switching, they are still necessary as
packet receivers in Mininet discard packets if their destination MAC address
does not match their own address.

8.2. Control Plane Architecture

The control plane is visualized in Figure 19. It consists of one global con-

Table entries

P4 target
P4 Pipeline

gRPC Server

gRPC client

Local controller

P4 Runtime Interface

gRPC client

Global controller

gRPC Server

gRPC Server

gRPC client

BIER

Communication layer

Application layer

Service layer Topology Table
Management

Communication using
proprietary protobuf protocol

Local topology

MAC Port

Group
Management

IPv4

Table entries

P4 target
P4 Pipeline

gRPC Server

gRPC client

Local controller

P4 Runtime Interface

gRPC Server gRPC client

Local topology

MAC Port

Figure 19: Controller architecture.

troller and one local controller per switch. The local controllers run directly on
the switch hardware as P4 switches are mostly whiteboxes. The local controller
takes care of tasks that can be performed locally while the global controller is in
charge of configuration issues that require a global network view. In theory, a
single controller could perform all tasks. However, there are three reasons that
call for a local controller: scalability, speed, and robustness. Performing local
tasks at the local controller relieves the global controller from unnecessary work.
A local controller can reach the switch faster than a global controller. And, most
important, a local controller does not need to communicate with the switch via
a network. In case of a network failure, the local controller still reaches the
switch while the global controller may be unable to do so. Local controllers
have also been applied for similar reasons in LoCoSDN [45], P4-MACSec [46],
and P4-IPSec [47]. In the following we explain the local and global controller
in more detail.

29

8.2.1. Local Controller

Each switch has a local controller. Switch and local controller communicate
via the so-called P4 Runtime which is essentially the Southbound interface in
the SDN context. The P4 Runtime uses a gRPC channel and a protobuf-based
communication protocol. It allows the controller to write table entries on the
switch.

Figure 19 shows that the local controller keeps information about the local
topology, learns about neighboring nodes, and port status, and configures this
information in the tables of the switch. Moreover, it relays some packets to the
global controller and writes table entries as a proxy for the global controller.

We leverage the local controller for three local tasks that we describe in the
following: IGMP handling, neighbor discovery, and port monitoring.

IGMP Handling. Multiple hosts are connected to a switch. They leverage the
Internet Group Message Protocol (IGMP) to join and leave IPMC groups. If the
switch receives an IGMP packet, it forwards it to its local controller which then
configures the switch for appropriate actions. For example, it adds a new host to
the IPMC group and configures the native IPMC feature of the switch to deliver
IPMC packets to the hosts. That feature is used only for carrying multicast
traffic from the switch to the hosts. To populate the MAT IPMC native table,
the local controller utilizes the Thrift channel instead of the P4 Runtime as this
API is target-specific.

Neighbor Discovery. For neighbor discovery, we implemented a simple propri-
etary topology recognition protocol. All nodes announce themselves to their
neighbors. It allows the local controller to learn the MAC address of the neigh-
bor for each egress port. The local controller stores this information in the
match+action table MAT Ethernet which is utilized in the CB Ethernet con-
trol block (see Section 8.1.6).

Port Monitoring. A P4 switch by itself is not able to find out whether a neigh-
boring node is reachable. However, a fast indication of this information is crucial
to support FRR. In a real network a local controller may test for neighbor reach-
ability, e.g., using a BFD towards all neighbors, loss-of-light, loss-of-carrier, or
any other suitable mechanism. Then, the local controller configures this in-
formation as a bit string in the match+action table MAT Port Status of the
switch whenever the port status changes. Failure detection is target-dependent
and out of scope of this document. Therefore we trigger failure processing of
the local controller manually with a software signal. The local controller then
activates IP-FRR and BIER-FRR if enabled and notifies the global controller
for recomputation of forwarding entries.

8.2.2. Global Controller

We divide the architecture of the global controller in three layers: commu-
nication, service, and application (see Figure 19).

30

The communication layer is responsible for the communication with the local
controllers. Each switch is connected to its local controller. Since the P4 runtime
only allows one controller with write access, the global controller cannot directly
control the switches. Therefore, it communicates with the local controllers to
configure the switches. All changes calculated by the global controller are sent
to the local controller using a separate channel. The local controller forwards
the changes to the switch using the P4 runtime interface.

The service layer provides services for the application layer. This includes
information about the topology, multicast groups, and entries in the tables on
the switches. The application layer utilizes that information to calculate the
table entries.

The global controller receives IGMP messages and keeps track of subscrip-
tions to IPMC groups. If a host is the first to enter or the last to leave an
IPMC group at a BFER, the global controller configures the MAT IPMC BIER
table of all BFIRs with an appropriate bit string for the specific IPMC group
by activating or deactivating the corresponding bit of the BFER. As a result,
the BFIR starts or stops sending traffic from this IPMC group to the BFER.

The global controller sets all entries in the MAT IP unicast and MAT IPMC BIER
tables of all switches and the entries in the MAT BIFT s. If the global con-
troller is informed by a local controller about a failure, it first reconfigures
the MAT IP unicast and MAT IPMC BIER tables and then the entries of the
MAT BIFT s accordingly.

8.3. Codebase

The implementation of the BIER data plane and control plane including a
demo can be downloaded at https://github.com/uni-tue-kn/p4-bier. The pro-
vided code contains a more detailed documentation of the BIER(-FRR) imple-
mentation. The demo contains several Mininet network topologies that were
used to verify the functionality of BIER(-FRR). One of them is described in
Section 9.1. Links can be disabled using Mininet, which enables the verification
of the BIER-FRR mechanism. A simple host CLI allows multicast packets to
be sent and incoming multicast packets to be displayed.

9. Evaluation

In this section we illustrate that BIER traffic is better protected with BIER-
FRR. To that end, we conduct experiments in a testbed using our prototype. We
first explain the experimental setup, the timing behavior of our emulation and
our metrics. Finally, we describe the testbed setup and present experimental
protection results in an BIER/IP network with and without IP-FRR and BIER-
FRR, for link protection and node protection, respectively.

9.1. Methodology

First, we describe the general approach for our evaluation. Then, we discuss
the timing behavior of a software-based evaluation. As the prototype switch is

31

https://github.com/uni-tue-kn/p4-bier

differently controlled than typical routers, we adapt reaction times of the con-
troller after a failure to mimic the timely behaviour of updates for IP forwarding
tables and BIFTs. Finally, we explain our metrics.

9.1.1. General Setup

We emulate different topologies in Mininet [48]. The core network is im-
plemented with our P4-based prototype and the software-based simple switch
which is based on the BMv2 framework [49]. It forwards IP unicast, IP mul-
ticast, and BIER traffic. One source and several subscribers are connected to
the core network. The source periodically sends IP unicast and IP multicast
packets. IP unicast packets are forwarded as usual through the core network.
When IP multicast packets enter the core network, they are encapsulated with
a BIER header at the BFIR. BFERs remove BIER headers and forward the IP
multicast packets to the subscribers.

Rules for the match+action tables are computed by the global controller in
an initial setup phase. In different scenarios we simulate link and node failures
and observe packet arrivals at the subscribers. We study different combinations
of IP-FRR and BIER-FRR to evaluate the delay until subscribers receive traffic
again after a failure has been detected. Also in those cases, the local controller
notifies the global controller to perform IP reconvergence and BIFT recompu-
tation because FRR is meant to be only a temporary measure until the global
forwarding information base has been updated as a response to the link or node
failure.

We report events at the PLR and at all subscribers before and after the fail-
ure. For the PLR we show the following signals: failure detection at t0, updates
of IP forwarding entries, and updates of BIFT entries. For the subscribers we
record receptions of unicast and multicast packets.

9.1.2. Timing Behavior

Our switch implementation in a small, virtual environment has a different
timing behavior than a typical router in a large, physical environment. In par-
ticular signaling can be executed with insignificant delay in our virtual environ-
ment, e.g., notifying the global controller about the failure or the distribution of
updated forwarding entries. This is different with routers and routing protocols
in the physical world. Signaling requires significant time as routing protocols
need to exchange information about the changed topology. Routers compute
alternative routes and push them to their forwarding tables. Only after all uni-
cast paths have been recomputed and globally updated by the routing underlay,
BFRs can compute new forwarding entries for BIER and push them to their
BIFTs. Thus, the BIFT is updated only significantly later compared to the
unicast forwarding information base. To respect that in our evaluation, we con-
figure the global controller to install new IP forwarding entries on the switches
only after 150 ms after being informed about a failure and new BIFT entries
another 150 ms later.

32

9.1.3. Metric

We perform experiments with and without IP-FRR and BIER-FRR, and
compare the time after which unicast and multicast traffic is delivered again at
the subscribers after a failure has been detected by the affected BFR.

9.2. Link Protection

We perform experiments for the evaluation of BIER-FRR with link pro-
tection. First, we explain the experimental setup. Afterwards, we report and
discuss the results for all scenarios.

9.2.1. Setup for Link Protection

BFER

NH

BFIRSource Subscriber

Core network

(PLR)

Figure 20: Two hosts the Source and the Subscriber are connected to a BIER network with
IP as the routing underlay.

We emulate the testbed depicted in Figure 20 in Mininet. Two hosts the
Source and the Subscriber are connected to a BIER/IP network. The host
Source sends every 10 ms packets to the host Subscriber over the core network.
Every other packet is sent by IP unicast and IPMC. The primary path carries
packets from PLR via NH to BFER. We simulate the failure of the link
between the PLR and the NH to interrupt packet delivery. We compare the
time until the host Subscriber receives unicast and multicast traffic again, after
the failure has been detected by the PLR. We perform experiments with and
without IP-FRR and BIER-FRR with link protection.

9.2.2. Without IP-FRR and BIER-FRR

In the first experiment, failure recovery is based only on IP reconvergence
and BIFT recomputation. Neither IP-FRR nor BIER-FRR are enabled. Fig-
ure 21(a) shows that the failure interrupts packet delivery at the Subscriber.
Unicast reconvergence is completed after about 170 ms after failure detection.
Updating the BIFT entries has finished only after about 370 ms in total. Unicast
and multicast packets are received again by the Subscriber only after updated
IP and BIER forwarding rules from the controller have been installed at the
PLR.

9.2.3. With IP-FRR but without BIER-FRR

In the second experiment, IP-FRR is enabled but BIER-FRR remains dis-
abled. Figure 21(b) shows that IP unicast traffic immediately benefits from

33

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

0 100 200 300 400 500
Time (ms)

(a) Without IP-FRR and BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

0 100 200 300 400 500
Time (ms)

(b) With IP-FRR but without BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

0 100 200 300 400 500
Time (ms)

(c) Without IP-FRR but with BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

0 100 200 300 400 500
Time (ms)

(d) With IP-FRR and BIER-FRR.

Figure 21: Reception time of packets in the link failure scenario.

34

IP-FRR when the PLR detects the failure. IP-FRR instantly reroutes pack-
ets and, therefore, IP unicast traffic is still delivered at the Subscriber. Both
IP reconvergence and BIFT recompuration are finished slightly later compared
to the previous scenario. The reason for the extended duration is that the
global controller needs to compute new forwarding entries for IP-FRR during
reconvergence, which is not needed if IP-FRR is disabled. After 200 ms, IP
reconvergence has finished and the primary IP unicast forwarding entries have
been updated. Multicast packets are delivered only after BIFT recomputation
after about 400 ms.

9.2.4. Without IP-FRR but with BIER-FRR

In the third experiment, IP-FRR is disabled but BIER-FRR is enabled.
Figure 21(c) shows that unicast traffic is delivered at the Subscriber when IP
reconvergence has finished after about 170 ms. Due to BIER-FRR, BIER traffic
benefits from the faster IP reconvergence, too. Multicast traffic is delivered
after 170 ms as well, and not only after BIFT recomputation. The BIFT is
updated only after about 400 ms in total which is slightly longer than in the
scenario without BIER-FRR. Although conceptually the BIFT does not require
modification for BIER-FRR with link protection, the match+action tables in
the P4 implementation need backup entries that tunnel BIER packets in case
of a failure. Therefore, the global controller has to compute new backup entries
for BIER-FRR in addition to primary BIFT entries during the recomputation
process. The slightly delayed BIFT recomputation is not a disadvantage for
BIER traffic because BIER-FRR reroutes BIER packets until both primary and
backup BIFT entries have been updated.

9.2.5. With IP-FRR and BIER-FRR

In the last experiment, IP-FRR and BIER-FRR are enabled. Figure 21(d)
illustrates that both unicast and multicast traffic are delivered at the Subscriber
without any delay despite of the failure. This is achieved by FRR mechanisms
in both the routing underlay and the BIER layer. IP-FRR immediately re-
stores connectivity for unicast traffic. BIER-FRR leverages the resilient routing
underlay to immediately reroute BIER packets. IP reconvergence has finished
after about 200 ms. BIFT recomputation finishes only after about 420 ms. In
both cases the longer time is explained by the additional FRR entries the global
controller has to compute during IP reconvergence and BIFT recomputation,
respectively.

9.3. Node Protection

In this paragraph we evaluate BIER-FRR with node protection. First, we
describe the experimental setup. Then, we report and discuss the evaluation
results for all four scenarios.

35

Source

Core network

BFIR NH

BFER1

BFER2

Subscriber1

Subscriber2

(PLR)

Figure 22: Three hosts, Source, Subscriber1 and Subscriber2 are connected to a BIER net-
work with IP as the routing underlay.

9.3.1. Setup for Node Protection

Figure 22 shows the topology we emulated in Mininet. The three hosts
Source, Subscriber1, and Subscriber2 are connected to an BIER/IP network.
The Source alternately sends two IP unicast packets and one IP multicast
packet with 10 ms in between. The unicast packets are sent to Subscriber1
and Subscriber2. The IPMC group of the the IPMC packet is subscribed by
Subscriber1 and Subscriber2. On the primary path, packets are carried from
the PLR via the NH to BFER1 and BFER2, respectively. We simulate the
failure of the NH to interrupt packet delivery with a node failure. We evaluate
the time until both the Subscriber1 and the Subscriber2 receive traffic again
after the PLR detects the failure. We perform experiments with and with-
out IP-FRR and BIER-FRR with node protection. We discuss the outcome
and show figures only for Subscriber1 because results for Subscriber2 are very
similar.

9.3.2. Without IP-FRR and BIER-FRR

In the first scenario, the local controller at the PLR triggers only IP recon-
vergence and BIFT recomputation after failure detection. No FRR measures
are enabled. Figure 23(a) shows that the Subscriber1 receives IP unicast traf-
fic only after IP reconvergence which takes about 180 ms. Subscriber1 receives
multicast traffic only after BIFT recomputation which takes about 400 ms. Both
IP reconvergence and BIFT recomputation require slightly more time than in
the link failure scenario because now the local controller reports a node failure
which requires more rules to be recomputed.

9.3.3. With IP-FRR but without BIER-FRR

In the second scenario, IP-FRR is enabled but not BIER-FRR. Figure 23(b)
shows that IP unicast traffic immediately benefits from IP-FRR. Traffic is de-
livered at the Subscriber1 without any delay despite of the failure. IP recon-
vergence requires about 240 ms. Multicast traffic is received by the Subscriber1
only after BIFT recomputation which has finished only after about 520 ms.

36

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

−100 0 100 200 300 400 500 600
Time (ms)

(a) Without IP-FRR and BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

−100 0 100 200 300 400 500 600
Time (ms)

(b) With IP-FRR but without BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

−100 0 100 200 300 400 500 600
Time (ms)

(c) Without IP-FRR but with BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

−100 0 100 200 300 400 500 600
Time (ms)

(d) With IP-FRR and BIER-FRR.

Figure 23: Reception time of packets in the node failure scenario.

37

Again, IP reconvergence and BIFT recomputation require slightly more time
than without IP-FRR because because additional IP-FRR entries have to be
computed.

9.3.4. Without IP-FRR but with BIER-FRR

In the third scenario, BIER-FRR is enabled but not IP-FRR. Figure 23(b)
shows that both IP unicast and multicast traffic are received at the Subscriber1
only after IP reconvergence which takes about 170 ms. Afterwards, IP traffic
is rerouted because of the updated forwarding entries. BIER traffic is rerouted
after that time as well, because BIER-FRR leverages the updated routing un-
derlay instead of requiring BIFT recomputation which has finished only after
about 500 ms.

9.3.5. With IP-FRR and BIER-FRR

In the last scenario, both IP-FRR and BIER-FRR are enabled. Figure 23(d)
shows that both IP unicast and multicast traffic are received by the Subscriber1
without any delay despite of the failure. IP-FRR reroutes IP unicast traffic as
soon as the failure is detected by the PLR. Similarly, BIER-FRR reroutes BIER
traffic immediately, too. Therefore, BIER traffic benefits from the resilience of
the routing underlay to forward BIER traffic although the NH failed and BIFT
recomputation has not finished, yet. IP reconvergence takes about 240 ms.
BIFT recomputation finished only after 600 ms.

10. Conclusion

BIER is a novel, domain-based, scalable multicast transport mechanism for
IP networks that does not require state per IP multicast (IPMC) group in core
nodes. Only ingress nodes of a BIER domain maintain group-specific infor-
mation and push a BIER header on multicast traffic for simplified forwarding
within the BIER domain. Bit-forwarding routers (BFRs) leverage a bit index
forwarding table (BIFT) for forwarding decisions. Its entries are derived from
the interior gateway protocol (IGP), the so-called routing underlay. In case of
a failure, the BIFT entries are recomputed only after IP reconvergence. There-
fore, BIER traffic encounters rather long outages after link or node failures and
cannot profit from fast reroute (FRR) mechanisms in the IP routing underlay.

In this work, we proposed BIER-FRR to shorten the time until BIER traf-
fic is delivered again after a failure. BIER-FRR deviates BIER traffic around
the failure via unicast tunnels through the routing underlay. Therefore, BIER
benefits from fast reconvergence or FRR mechanisms of the routing underlay
to deliver BIER traffic as soon as connectivity for unicast traffic has been re-
stored in the routing underlay. BIER-FRR has a link and a node protection
mode. Link protection is simple but cannot protect against node failures. To
that end, BIER-FRR offers a node protection mode which requires extensions
to the BIFT structure.

As BIER defines new headers and forwarding behavior, it cannot be con-
figured on standard networking gears. Therefore, a second contribution of

38

this paper is a prototype implementation of BIER and BIER-FRR on a P4-
programmable switch based on P416. It works without extern functions or
other extensions such as local agents that impede portability. The switch offers
an API for interaction with controllers. A local controller takes care of local
tasks such as MAC learning and failure detection. A global controller configures
other match+action tables that pertain to forwarding decisions. A predecessor
of this prototype without BIER-FRR and based on P414 has been presented as
a demo in [5]. The novel BIER prototype including BIER-FRR demonstrates
that P4 facilitates implementation of rather complex forwarding behavior.

We deployed our prototype on a virtualized testbed based on Mininet and the
software switch BMv2. Our experiments confirm that BIER-FRR significantly
reduces the time until multicast traffic is received again by subscribers after link
or node failures. Without BIER-FRR, multicast packets arrive at the subscriber
only after reconvergence of the routing underlay and BIFT recomputation. With
BIER-FRR, multicast traffic is delivered again as soon as connectivity in the
routing underlay is restored, which is particularly fast if the routing underlay
applies FRR methods.

Acknowledgment

The authors thank Wolfgang Braun and Toerless Eckert for valuable input
and stimulating discussions.

References

[1] D. Merling, M. Menth, et al., An Overview of Bit Index Explicit Replication
(BIER), IETFJournal (Mar. 2018).

[2] I. Wijnands, E. Rosen, et al., RFC8279: Multicast Using Bit Index Explicit
Replication (BIER), https://tools.ietf.org/html/rfc8279 (Nov. 2017).

[3] M. Shand, S. Bryant, IP Fast Reroute Framework,
https://tools.ietf.org/html/rfc5714 (Jan. 2010).

[4] D. Merling, M. Menth, BIER Fast Reroute,
https://datatracker.ietf.org/doc/draft-merling-bier-frr/ (Mar. 2019).

[5] W. Braun, J. Hartmann, et al., Demo: Scalable and Reliable Software-
Defined Multicast with BIER and P4, IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM) (May 2017).

[6] The P4 Language Consortium, The P4 Language Specification Version
1.0.5, https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf (Nov. 2018).

[7] The P4 Language Consortium, The P4 Language Specification Version
1.1.0, https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf (Nov. 2018).

39

[8] H. Holbrook, B. Cain, et al., Using Internet Group Management Protocol
Version 3 (IGMPv3) and Multicast Listener Discovery Protocol Version 2
(MLDv2) for Source-Specific Multicast, https://tools.ietf.org/html/rfc4604
(Aug. 2006).

[9] T. Speakman, J. Crowcroft, et al., PGM Reliable Transport Protocol Spec-
ification, https://tools.ietf.org/html/rfc3208 (Dec. 2001).

[10] G. Rétvári, J. Tapolcai, et al., IP fast ReRoute: Loop Free Alternates
revisited, IEEE Conference on Computer Communications (Apr. 2011).

[11] D. Katz, D. Ward, et al., Bidirectional Forwarding Detection (BFD),
https://tools.ietf.org/html/rfc5880 (Jun. 2010).

[12] D. Merling, W. Braun, et al., Efficient Data Plane Protection for SDN,
IEEE Conference on Network Softwarization and Workshops (Jun. 2018).

[13] M. Menth, M. Hartmann, et al., Loop-Free Alternates and Not-Via Ad-
dresses: A Proper Combination for IP Fast Reroute?, Computer Networks
54 (Jun. 2010).

[14] A. Raj, O. Ibe, et al., A survey of IP and multiprotocol label switchingfast
reroute schemes, Computer Networks 51 (Jun. 2007).

[15] V. S. Pal, Y. R. Devi, et al., A Survey on IP Fast Rerouting Schemes using
Backup Topology, International Journal of Advanced Research inComputer
Science and Software Engineering 3 (Apr. 2003).

[16] S. Bryant, S. Previdi, et al., A Framework for IP and MPLS Fast Reroute
Using Not-Via Addresses, https://tools.ietf.org/html/rfc6981 (Aug. 2013).

[17] L. Csikor, G. Rétvári, et al., IP fast reroute with remote Loop-Free Al-
ternates: The unit link cost case, International Congress on Ultra Modern
Telecommunications and Control Systems (Feb. 2012).

[18] S. Islam, N. Muslim, et al., A Survey on Multicasting in Software-Defined
Networking, IEEE Communications Surveys Tutorials 20 (Nov. 2018).

[19] Z. Al-Saeed, I. Ahmada, et al., Multicasting in Software Defined Networks:
A Comprehensive Survey, Journal of Network and Computer Applications
104 (Feb. 2018).

[20] J. Rückert, J. Blendin, et al., Software-Defined Multicast for Over-the-Top
and Overlay-based Live Streaming in ISP Networks, Journal of Network
and Systems Management 23 (Apr. 2015).

[21] J. Rückert, J. Blendin, et al., Flexible, Efficient, and Scalable Software-
Defined Over-the-Top Multicast for ISP Environments With DynSdm,
IEEE Transactions on Network and Service Management 13 (Sep. 2016).

40

[22] L. H. Huang, H.-J. Hung, et al., Scalable and Bandwidth-Efficient Multicast
for Software-Defined Networks, IEEE Global Communications Conference
(Dec. 2014).

[23] S. Zhou, H. Wang, et al., Cost-Efficient and Scalable Multicast Tree in
Software Defined Networking, Algorithms and Architectures for Parallel
Processing (Dec. 2015).

[24] J.-R. Jiang, S.-Y. Chen, Constructing Multiple Steiner Trees for Software-
Defined Networking Multicast, Proceedings of the 11th International Con-
ference on Future Internet Technologies (Jun. 2016).

[25] Y.-D. Lin, Y.-C. Lai, et al., Scalable Multicasting with Multiple Shared
Trees in Software Defined Networking, Journal of Network and Computer
Applications 78 (Jan. 2017).

[26] Z. Hu, D. Guo, et al., Multicast Routing with Uncertain Sources in
Software-Defined Network, IEEE/ACM International Symposium on Qual-
ity of Service (Jun. 2016).

[27] B. Ren, D. Guo, et al., The Packing Problem of Uncertain Multicasts,
Concurrency and Computation: Practice and Experience 29 (August 2017).

[28] A. Iyer, P. Kumar, et al., Avalanche: Data Center Multicast using Software
Defined Networking, International Conference on Communication Systems
and Networks (Jan 2014).

[29] W. Cui, C. Qian, et al., Scalable and Load-Balanced Data Center Multicast,
IEEE Global Communications Conference (Dec 2015).

[30] S. H. Shen, L.-H. Huang, et al., Reliable Multicast Routing for Software-
Defined Networks, IEEE Conference on Computer Communications (April
2015).

[31] M. Popovic, R. Khalili, et al., Performance Comparison of Node-Redundant
Multicast Distribution Trees in SDN Networks, International Conference
on Networked Systems (Apr. 2017).

[32] T. Humernbrum, B. Hagedorn, et al., Towards Efficient Multicast Commu-
nication in Software-Defined Networks, IEEE International Conference on
Distributed Computing Systems Workshops (Jun. 2016).

[33] D. Kotani, K. Suzuki, et al., A Multicast Tree Management Method Sup-
porting Fast Failure Recovery and Dynamic Group Membership Changes
in OpenFlow Networks, Journal of Information Processing 24 (2016).

[34] T. Pfeiffenberger, J. L. Du, et al., Reliable and Flexible Communications
for Power Systems: Fault-tolerant Multicast with SDN/OpenFlow, Interna-
tional Conference on New Technologies, Mobility and Security (Jul. 2015).

41

[35] W. K. Jia, L.-C. Wang, et al., A Unified Unicast and Multicast Routing and
Forwarding Algorithm for Software-Defined Datacenter Networks, IEEE
Journal on Selected Areas in Communications 31 (Dec. 2013).

[36] M. J. Reed, M. Al-Naday, et al., Stateless Multicast Switching in Soft-
ware Defined Networks, IEEE International Conference on Communica-
tions (May 2016).

[37] A. Giorgetti, A. Sgambelluri, et al., First Demonstration of SDN-based Bit
Index Explicit Replication (BIER) Multicasting, European Conference on
Networks and Communications (Jun. 2017).

[38] A. Giorgetti, A. Sgambelluri, et al., Bit Index Explicit Replication (BIER)
Multicasting in Transport Networks, International Conference on Optical
Network Design and Modeling (May 2017).

[39] T. Eckert, G. Cauchie, et al., Traffic Engineering for Bit Index Explicit
Replication BIER-TE, http://tools.ietf.org/html/draft-eckert-bier-te-arch
(Nov. 2017).

[40] W. Braun, M. Albert, et al., Performance Comparison of Resilience Mech-
anisms for Stateless Multicast Using BIER, IFIP/IEEE International Sym-
posium on Integrated Network Management (May 2017).

[41] Q. Xiong, G. Mirsky, et al., The Resilience for BIER,
https://datatracker.ietf.org/doc/draft-xiong-bier-resilience/ (Mar. 2019).

[42] Q. Xiong, G. Mirsky, et al., BIER BFD,
https://datatracker.ietf.org/doc/draft-hu-bier-bfd/ (Mar. 2019).

[43] D. Merling, S. Lindner, et al., Comparison of Fast-Reroute Mechanisms for
BIER-Based IP Multicast, International Conference on Software Defined
Systems (Apr. 2020).

[44] P. Bosshart, D. Daly, et al., P4: Programming Protocol-Independent
Packet Processors, ACM SIGCOMM Computer Communication Review
44 (Jul. 2014).

[45] M. Schmidt, F. Hauser, et al., LoCoSDN: A Local Controller for Opera-
tion of OFSwitches in non-SDN Networks, Software Defined System (Apr.
2018).

[46] F. Hauser, M. Schmidt, et al., P4-MACsec: Dynamic Topology Monitoring
and Data Layer Protection with MACsec in P4-Based SDN, IEEE Access
(Mar. 2020).

[47] F. Hauser, M. Häberle, et al., P4-IPsec: Implementation of IPsec Gateways
in P4 with SDN Control for Host-to-Site Scenarios, ArXiv (Jul. 2019).

42

[48] B. Lantz, B. Heller, et al., A Network in a Laptop: Rapid Prototyping
for Software-defined Networks, ACM SIGCOMM HotNets Workshop (Oct.
2010).

[49] p4lang, behavioral-model, https://github.com/p4lang/

behavioral-model (Mar. 2019).

43

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model

	Introduction
	Technological Background for IP Multicast
	IP Fast Reroute
	Fundamentals of IP-FRR
	Related Work

	Related Work
	Multicast Implementations with OpenFlow
	Multicast Protection with OpenFlow
	Improved Multicast Forwarding for SDN Switches
	SDN Support for BIER

	Bit Index Explicit Replication (BIER)
	Overview
	BIER Domain
	A Layered BIER Architecture
	BIER Header and Forwarding Principle

	Bit Index Forwarding Table
	BIER Forwarding
	BIER Forwarding Procedure
	BIER Forwarding Example
	BIER Header Stack

	BIER Fast Reroute
	Link Protection
	Resilience Problems of BIER for Link Failures
	BIER-FRR with Link Protection
	Example for BIER-FRR with Link Protection

	Node Protection
	Resilience Problems of BIER for Node Failures
	BIER-FRR with Node Protection
	BIFT with Backup Entries
	Example for BIER-FRR with Node Protection
	Computation of Backup Entries

	Properties of BIER-FRR
	Application of IP-FRR Mechanism on BIER Layer

	Introduction to P4
	P4 Pipeline
	Metadata
	Match+Action Tables
	Match Part
	Actions
	Rules

	Control Blocks
	Recirculation
	Packet Cloning

	P4-Based Implementation of BIER and BIER-FRR
	Data Plane
	Packet Header Processing
	Overview of Ingress and Egress Control Flow
	CB_Port_Status Control Block
	CB_IPv4 Control Block
	CB_BIER Control Block
	CB_Ethernet Control Block

	Control Plane Architecture
	Local Controller
	Global Controller

	Codebase

	Evaluation
	Methodology
	General Setup
	Timing Behavior
	Metric

	Link Protection
	Setup for Link Protection
	Without IP-FRR and BIER-FRR
	With IP-FRR but without BIER-FRR
	Without IP-FRR but with BIER-FRR
	With IP-FRR and BIER-FRR

	Node Protection
	Setup for Node Protection
	Without IP-FRR and BIER-FRR
	With IP-FRR but without BIER-FRR
	Without IP-FRR but with BIER-FRR
	With IP-FRR and BIER-FRR

	Conclusion

